Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 106 trang 23 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3 trên 17 phiếu

Tìm điều kiện để A có nghĩa

Cho biểu thức

\(A = {{{{\left( {\sqrt a  + \sqrt b } \right)}^2} - 4\sqrt {ab} } \over {\sqrt a  - \sqrt b }} - {{a\sqrt b  + b\sqrt a } \over {\sqrt {ab} }}.\)

a)      Tìm điều kiện để A có nghĩa.

b)      Khi A có nghĩa , chứng tỏ giá trị của A không phụ thuộc vào a.

Gợi ý làm bài:

a) Biểu thức A có nghĩa khi và chỉ khi :

\(\left\{ \matrix{
a \ge 0 \hfill \cr
b \ge 0 \hfill \cr
\sqrt a - \sqrt b \ne 0 \hfill \cr
\sqrt {ab} \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a \ge 0 \hfill \cr
b \ge 0 \hfill \cr
a \ne b \hfill \cr
ab \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a > 0 \hfill \cr
b > 0 \hfill \cr
a \ne b \hfill \cr} \right.\)

Vậy \(a > 0,b > 0\) và \(a \ne b\) thì A có nghĩa.

b) Ta có :

\(\eqalign{
& A = {{{{\left( {\sqrt a + \sqrt b } \right)}^2} - 4\sqrt {ab} } \over {\sqrt a - \sqrt b }} - {{a\sqrt b + b\sqrt a } \over {\sqrt {ab} }} \cr
& = {{\sqrt {{a^2}} + 2\sqrt {ab} + \sqrt {{b^2}} - 4\sqrt {ab} } \over {\sqrt a - \sqrt b }} - {{\sqrt {{a^2}b} + \sqrt {a{b^2}} } \over {\sqrt {ab} }} \cr
& = {{\sqrt {{a^2}} - 2\sqrt {ab} + \sqrt {{b^2}} } \over {\sqrt a - \sqrt b }} - {{\sqrt {ab} (\sqrt a + \sqrt b )} \over {\sqrt {ab} }} \cr
& = {{{{\left( {\sqrt a - \sqrt b } \right)}^2}} \over {\sqrt a - \sqrt b }} - \left( {\sqrt a + \sqrt b } \right) \cr
& = \sqrt a - \sqrt b - \sqrt a - \sqrt b = - 2\sqrt b \cr}\)

Vậy giá trị của A không phụ thuộc vào a.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan