Ta đã biết: Trong hệ ghi số thập phân, cứ mười đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền trước. Mỗi chữ số trọng hệ thập phân nhận một trong mười giá trị: 0, 1, 2, 3, ..., 9
Số \(\overline {abcd} \) trong hệ thập phân có giá trị bằng
\(a{.10^3} + b{.10^2} + c.10 + d\)
Có một hệ ghi số mà cứ hai đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền trước, đó là hệ nhị phân. Mỗi chữ số trong hệ nhị phân nhận một trong hai giá trị 0 và 1. Một số trong hệ nhị phân, chẳng hạn \(\overline {abcd} \), được ký hiệu là \({\overline {abcd} _{\left( 2 \right)}}\)
Số \({\overline {abcd} _{\left( 2 \right)}}\) trong hệ thập phân có giá trị bằng:
Ví dụ: \(\overline {{{1101}_{\left( 2 \right)}}} = {1.2^3} + {1.2^2} + 0.2 + 1 = 8 + 4 + 0 + 1 = 13\)
a) Đổi sang hệ thập phân các số sau: \({\overline {100} _{\left( 2 \right)}},{\overline {111} _{\left( 2 \right)}},{\overline {1010} _{\left( 2 \right)}},{\overline {1011} _{\left( 2 \right)}}\)
b) Đổi sang hệ nhị phân các số sau: 5, 6, 9, 12.
Giải
a) \({\overline {100} _{\left( 2 \right)}} = {1.2^2} + 0.2 + 0 = 4 + 0 + 0 = 4\)
\({\overline {111} _{\left( 2 \right)}} = {1.2^2} + 1.2 + 1 = 4 + 2 + 1 = 7\)
\({\overline {1010} _{\left( 2 \right)}} = {1.2^3} + {0.2^2} + 1.2 + 0 = 8 + 0 + 2 + 0 = 10\)
\({\overline {1011} _{\left( 2 \right)}} = {1.2^3} + {0.2^2} + 1.2 + 1 = 8 + 0 + 2 + 1 = 11\)
b) \(5 = {1.2^2} + 0.2 + 1 = {\overline {101} _{\left( 2 \right)}}\)
\(6 = {1.2^2} + 1.2 + 0 = {\overline {110} _{\left( 2 \right)}}\)
\(9 = {1.2^3} + {0.2^2} + 0.2 + 1 = {\overline {1001} _{\left( 2 \right)}}\)
\(12 = {1.2^3} + {1.2^2} + 0.2 + 0 = {\overline {1100} _{\left( 2 \right)}}\)
Sachbaitap.net
>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục