Loigiaihay.com 2022

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 118 trang 20 Sách Bài Tập (SBT) lớp 6 tập 1

Bình chọn:
4.5 trên 55 phiếu

Chứng tỏ rằng: a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho hai.

Chứng tỏ rằng:

a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho hai.

b) Trong ba số tự nhiên liên tiếp, có một số chia hết cho ba.

Giải

a) Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh .

Nếu a không chia hết cho 2 thì  a = 2k + 1 ( k ∈ N)

Suy ra : a + 1 = 2k + 1 + 1

Ta có : 2k  ⋮  2 ; 1 + 1 = 2  ⋮  2

Suy ra  ( 2k +1 +1 ) ⋮  2 hay ( a+ 1) ⋮  2

Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1  hoặc  a = 3k + 2 ( k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3  ⋮ 3

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3  ⋮ 3

Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.

Sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 6 - Xem ngay

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan