Giả sử x là một giá trị gần đúng của \(\sqrt 5 \) . Xét số \(a = {{2x + 5} \over {x + 2}}.\) Chứng minh rằng
\(\left| {a - \sqrt 5 } \right| < \left| {x - \sqrt 5 } \right|,\)
Tức là nếu lấy a là giá trị gần đúng của \(\sqrt 5 \) thì ta được độ chính xác cao hơn là lấy \(x\).
Giải:
Đặt \(u = x - \sqrt 5 \) và \(v = a - \sqrt 5 .\) Ta có:
\(v = a - \sqrt 5 = {{2x + 5 - x\sqrt 5 - 2\sqrt 5 } \over {x + 2}}\)
\(= {{\left( {2 - \sqrt 5 } \right)\left( {x - \sqrt 5 } \right)} \over {x + 2}} = {{\left( {2 - \sqrt 5 } \right)u} \over {x + 2}}.\)
Vậy
\(\left| {a - \sqrt 5 } \right| = \left| v \right|\)
\(= \left| u \right|{{\sqrt 5 - 2} \over {x + 2}} < {{\sqrt 5 - 2} \over 2}\left| u \right| < \left| u \right|\)
\(= \left| {x - \sqrt 5 } \right|\)
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục