Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 17 trang 117 Sách bài tập Hình học 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 17 trang 117 Sách bài tập Hình học 11 Nâng cao

Cho hình hộp ABCD.A’B’C’D’ có các cạnh bằng a, \(\widehat {BA{\rm{D}}} = {60^0},\widehat {BAA'} = \widehat {DAA'} = {120^0}\) .

a) Tính góc giữa các cặp đường thẳng AB với A’D và AC’ với B’D.

b) Tính diện tích các hình A’B’CD và ACC’A’.

c) Tính góc giữa đường thẳng AC’ và các đường thẳng AB, AD, AA’.

Trả lời

 

Đặt \(\overrightarrow {AB}  = \overrightarrow x ,\overrightarrow {A{\rm{D}}}  = \overrightarrow y ,\overrightarrow {AA'}  = \overrightarrow z \)  thì

\(\eqalign{  & {\overrightarrow x ^2} = {\overrightarrow y ^2} = {\overrightarrow z ^2} = {a^2}  \cr  & \overrightarrow x .\overrightarrow y  = {{{a^2}} \over 2};  \cr  & \overrightarrow x .\overrightarrow z  =  - {{{a^2}} \over 2};  \cr  & \overrightarrow y .\overrightarrow z  =  - {{{a^2}} \over 2} \cr} \)

a) Vì AB // A’B’ nên góc giữa AB và A’D bằng góc giữa A’B’ và A’D, đó là góc \(\widehat {DA'B'}\)  hoặc \({180^0} - \widehat {DA'B'}\) .

Đặt \(\widehat {DA'B'} = \alpha \).

Ta có:

 \(\eqalign{  & A'D = a\sqrt 3 ,A'B' = a  \cr  & \overrightarrow {DB'}  = \overrightarrow x  - \overrightarrow y  + \overrightarrow z   \cr  &  \Rightarrow {\overrightarrow {DB'} ^2} = 3{{\rm{a}}^2} - {a^2} - {a^2} + {a^2} = 2{{\rm{a}}^2} \cr} \)

Vậy \(2{{\rm{a}}^2} = {a^2} + 3{{\rm{a}}^2} - 2{\rm{a}}.a\sqrt 3 \cos \alpha  \Rightarrow \cos \alpha  = {1 \over {\sqrt 3 }}\).

Như thế góc giữa A’D và AB bằng α mà \(\cos \alpha  = {1 \over {\sqrt 3 }}\)

\(\eqalign{  & \overrightarrow {AC'}  = \overrightarrow x  + \overrightarrow y  + \overrightarrow z   \cr  &  \Rightarrow {\overrightarrow {AC'} ^2} = 3{a^2} + {a^2} - {a^2} - {a^2} = 2{a^2} \cr} \)

Dễ thấy AB’ = a.

Ta có ADC’B’ là hình bình hành mà AD = AB’, AC’ = B’D nên tứ giác ADC’B’ là hình vuông. Vậy AC’ ⊥ B’D, tức là góc giữa AC’ và B’D bằng 90°.

b)

\({S_{A'B'C{\rm{D}}}} = A'D.A'B'\sin \widehat {DA'B'} = a\sqrt 3 .a.{{\sqrt 6 } \over 3}\) .

Vậy \({S_{A'B'C{\rm{D}}}} = {a^2}\sqrt 2 \)

Đặt \(\widehat {ACC'} = \beta \)  thì \(AC{'^2} = A{C^2} + CC{'^2} - 2{\rm{A}}C.CC'.\cos \beta \)

hay

\(\eqalign{  & 2{a^2} = 3{a^2} + {a^2} - 2a\sqrt 3 .a.\cos \beta   \cr  &  \Rightarrow \cos \beta  = {1 \over {\sqrt 3 }} \Rightarrow \sin \beta  = {{\sqrt 6 } \over 3} \cr} \)

Vậy \({S_{ACC'A'}} = AC.CC'.\sin \beta  = a\sqrt 3 .a.{{\sqrt 6 } \over 3} = {a^2}\sqrt 2 \)

c) Do \(\overrightarrow {AC'}  = \overrightarrow x  + \overrightarrow y  + \overrightarrow z \)

Suy ra:

\(\eqalign{  & \overrightarrow {AC'} .\overrightarrow {AB}  = \left( {\overrightarrow x  + \overrightarrow y  + \overrightarrow z } \right)\overrightarrow x   \cr  &  = {a^2} + {{{a^2}} \over 2} - {{{a^2}} \over 2} = {a^2} \cr} \)

hay

 \(\eqalign{  & \left| {\overrightarrow {AC'} } \right|\left| {\overrightarrow {AB} } \right|\cos \gamma  = {a^2}  \cr  &  \Rightarrow \cos \gamma  = {1 \over {\sqrt 2 }} \Rightarrow \gamma  = {45^0} \cr} \)

Vậy góc giữa AC’ và AB bằng 45°.

\(\eqalign{  & \overrightarrow {AC'} .\overrightarrow {A{\rm{D}}}  = \left( {\overrightarrow x  + \overrightarrow y  + \overrightarrow z } \right)\overrightarrow y   \cr  &  = {{{a^2}} \over 2} + {a^2} - {{{a^2}} \over 2} = {a^2} \cr} \)

hay

\(\eqalign{  & \left| {\overrightarrow {AC'} } \right|.\left| {\overrightarrow {A{\rm{D}}} } \right|\cos \varphi  = {a^2}  \cr  &  \Rightarrow \cos \varphi  = {1 \over {\sqrt 2 }} \Rightarrow \varphi  = {45^0} \cr} \)

Vậy góc giữa AC’ và AD bằng 45°.

\(\eqalign{  & \overrightarrow {AC'} .\overrightarrow {AA'}  = \left( {\overrightarrow x  + \overrightarrow y  + \overrightarrow z } \right)\overrightarrow z   \cr  &  =  - {{{a^2}} \over 2} - {{{a^2}} \over 2} + {a^2} = 0 \cr} \)

Vậy góc giữa AC’ và AA’ bằng 90°.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan