Chứng minh rằng số \(\pi \) là số dương T nhỏ nhất thỏa mãn điều kiện: Với mọi \(x \in {D_1}\backslash \left\{ {{\pi \over 2} + k\pi |k \in Z} \right\}\) ta có \(x + T \in {D_1},x - T \in {D_1}\) và \(\tan \left( {x + \pi } \right) = \tan x\) (tức là hàm số \(y= \tan x\) là hàm số tuần hoàn với chu kì \(\pi \))
Giải
T là số thỏa mãn \(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\) và \(\tan (x + T) = \tan x\).
Với \(x = 0\) ta được \(\tan T = \tan 0 = 0\) , suy ra \(T = k\pi ,k\) là số nguyên . Rõ ràng với mọi số nguyên \(k\) , số \(T = k\pi \) thỏa mãn \(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\) và \(\tan (x + T) = \tan x\). Trong các số \(k\pi ,k \in Z\) số dương nhỏ nhất là \(\pi \) . Vậy hàm số \(y=\tan x\) tuần hoàn với chu kì \(\pi \).
sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục