Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 21* trang 159 Sách bài tập (SBT) Toán 9 Tập 1

Bình chọn:
3.1 trên 11 phiếu

Cho đường tròn tâm O, đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH = DK.

Cho đường tròn tâm O, đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH = DK.

Giải:

Kẻ OM  ⊥ CD cắt AD tại N.

Ta có: MC = MD ( đường kính dây cung)

Hay MH + CH = MK + KD     (1)

Ta có: OM // BK (cùng vuông góc với CD)

Hay:     MN // BK

Mà:         OA = OB (= R)

Suy ra: NA = NK (tính chất đường trung bình của tam giác)

Lại có: OM // AH ( cùng vuông góc với CD)

Hay:     MN // AH

Mà:       NA = NK (chứng minh trên)

Suy ra:  MH = MK ( tính chất đường trung bình của tam giác)                   (2)

Từ (1) và (2) suy ra: CH = DK.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan