Xem thêm: Bài 4, 5: Biến cố và xác suất của biến cố - Các quy tắc tính xác suất
Chọn ngẫu nhiên 3 số từ tập \(\left\{ {1,2,....,11} \right\}\).
a) Tính xác suất để tổng ba số được chọn là 12.
b) Tính xác suất để tổng ba số được chọn là số lẻ.
Giải
Số trường hợp có thể là \(C_3^{11} = 165\)
a) Các bộ \(\left( {a,b,c} \right)\) mà \(a + b + c = 12\) và là \(\left( {1,2,9} \right),\left( {1,3,8} \right),\left( {1,4,7} \right),\left( {1,5,6} \right),\left( {2,3,7} \right),\left( {2,4,6} \right)\). Vậy \(P = {7 \over {C_{11}^3}} = {7 \over {165}}\)
b) Tổng \(a + b + c\) lẻ khi và chỉ khi: hoặc cả ba số đều lẻ hoặc trong ba số có 1 số lẻ và 2 số chẵn. Ta có \(C_6^3 = 20\) cách chọn 3 số lẻ từ tập 6 số lẻ và có \(C_6^1C_5^3 = 60\) cách chọn 1 số lẻ và 2 số chẵn. Vậy \(P = {{20 + 60} \over {165}} = {{16} \over {33}}\)
sachbaitap.com
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục