Chứng minh:
a) \(\sqrt {9 - \sqrt {17} } .\sqrt {9 + \sqrt {17} } = 8\)
b) \(2\sqrt 2 \left( {\sqrt 3 - 2} \right) + {\left( {1 + 2\sqrt 2 } \right)^2} - 2\sqrt 6 = 9\)
Gợi ý làm bài
a) Ta có:
\(\eqalign{
& \sqrt {9 - \sqrt {17} } .\sqrt {9 + \sqrt {17} } \cr
& = \sqrt {\left( {9 - \sqrt {17} } \right)\left( {9 + \sqrt {17} } \right)} \cr} \)
\( = \sqrt {81 - 17} = \sqrt {64} = 8\)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
b) Ta có:
\(2\sqrt 2 \left( {\sqrt 3 - 2} \right) + {\left( {1 + 2\sqrt 2 } \right)^2} - 2\sqrt 6 \)
\(\eqalign{
& = 2\sqrt 6 - 4\sqrt 2 + 1 + 4\sqrt 2 + 8 - 2\sqrt 6 \cr
& = 1 + 8 = 9 \cr} \)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Sachbaitap.net
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục