Một vận động viên bơi lội nhảy cầu (xem hình 5). Khi nhảy, độ cao h từ người đó tới mặt nước (tính bằng mét) phụ thuộc vào khoảng cách x từ điểm rơi đến chân cầu (tính bằng mét) bởi công thức:
\(h = - {\left( {x - 1} \right)^2} + 4\)
Hỏi khoảng cách x bằng bao nhiêu
a) Khi vận động viên ở độ cao 3m?
b) Khi vận động viên chạm mặt nước?
Giải
a) Khi h = 3m ta có:
\(\eqalign{
& 3 = - {\left( {x - 1} \right)^2} + 4 \Leftrightarrow {\left( {x - 1} \right)^2} - 1 = 0 \cr
& \Leftrightarrow {x^2} - 2x + 1 - 1 = 0 \Leftrightarrow x\left( {x - 2} \right) = 0 \cr} \)
Suy ra: \({x_1} = 0;{x_2} = 2.\) Vậy x = 0m hoặc x = 2m
b) Khi vận động viên chạm mặt nước ta có h = 0
\(\eqalign{
& \Rightarrow - {\left( {x - 1} \right)^2} + 4 = 0 \Leftrightarrow {x^2} - 2x - 3 = 0 \cr
& \Delta ' = {\left( { - 1} \right)^2} - 1.\left( { - 3} \right) = 1 + 3 = 4 > 0 \cr
& \sqrt {\Delta '} = \sqrt 4 = 2 \cr
& {x_1} = {{1 + 2} \over 1} = 3 \cr
& {x_2} = {{1 - 2} \over 1} = - 1 \cr} \)
Vì khoảng cách không âm. Vậy x = 3m
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục