31. Trang 10 Sách bài tập Hình Học 11 nâng cao.
Chứng minh rằng hợp thành của một số phép quay với các tâm quay trùng nhau là một phép quay.
Giải
Giả sử Q và Q’ là hai phép quay có tâm O với góc quay lần lượt là \(\varphi \) và \(\varphi ',\) còn F là hợp thành của Q và Q’. Với mọi điểm M khác O, giả sử Q biến M thành \({M_1}\) và Q’ biến \({M_1}\) thành \({M_2}\). Khi đó ta có:
\(\eqalign{
& OM = O{M_1} = O{M_2} \cr
& \left( {OM,O{M_1}} \right) = \varphi ,\,\left( {O{M_1},O{M_2}} \right) = \varphi ' \cr} \)
Suy ra \(OM = O{M_2}\)
Và \(\left( {OM,O{M_2}} \right) = \left( {OM,O{M_1}} \right) + \left( {O{M_1},O{M_2}} \right) \)
\(= \varphi + \varphi '\)
Vậy hợp thành F là phép quay tâm O góc quay bằng \(\varphi + \varphi '\)
Từ đó suy ra: Hợp thành của một số hữu hạn có tâm trùng nhau là một phép quay với tâm đó và có góc quay bằng tổng các góc quay của các phép quay đã cho.
sachbaitap.com
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục