Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 33* trang 161 Sách bài tập (SBT) Toán 9 Tập 1

Bình chọn:
4.5 trên 4 phiếu

Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB >CD, chứng minh rằng MH > MK.

Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB  >CD,  chứng minh rằng MH > MK.

Giải:

Ta có:  HA = HB (gt)

Suy ra:  OH ⊥ AB (đường kính dây cung)

Lại có:   KC = KD (gt)

Suy ra:   OK ⊥ CD ( đường kính dây cung)

Mà  AB > CD (gt)

Nên  OK > OH ( dây lớn hơn gần tâm hơn)

Áp dụng định lí Pi-ta-go vào tam giác vuông OHM ta có:

\(O{M^2} = O{H^2} + H{M^2}\)

Suy ra:     \(H{M^2} = O{M^2} - O{H^2}\)      (1)

Áp dụng định lí Pi-ta-go vào tam giác vuông OKM, ta có:

\(O{M^2} = O{K^2} + K{M^2}\)

Suy ra:    \(K{M^2} = O{M^2} - O{K^2}\)                  (2)

Mà  OH < OK (cmt)            (3)

Từ (1), (2) và (3) suy ra: \(H{M^2} > K{M^2}\) hay HM > KM.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan