Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.66 trang 69 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 3.66 trang 69 SBT Đại số 10 Nâng cao.

Cho hệ phương trình \(\left\{ \matrix{{x^2} + {y^2} = 2\left( {a + 1} \right) \hfill \cr {\left( {x + y} \right)^2} = 4 \hfill \cr} \right.\)

a. Giải hệ phương trình với a = 2.

b. Tìm các giá trị của a để hệ có nghiệm duy nhất.

Giải:

a. Với a = 2, ta có hệ \(\left\{ {\matrix{{{x^2} + {y^2} = 6} \cr {{{\left( {x + y} \right)}^2} = 4.} \cr} } \right.\)

Đặt \(u = x + y\) và \(v = xy\), ta được hệ phương trình ẩn là u và v :

\(\left\{ {\begin{array}{*{20}{c}}{{u^2} - 2v = 6}\\{{u^2} = 4}\end{array}} \right.\)

Hệ này có hai nghiệm \((u ; v) = (2 ; -1)\) và \((u ; v) = (-2 ; -1)\). Do đó hệ phương trình đã cho tương đương với

\(\left\{ {\begin{array}{*{20}{c}}{x + y = 2}\\{xy =  - 1}\end{array}} \right.\) hoặc \(\left\{ {\begin{array}{*{20}{c}}{x + y =  - 2}\\{xy =  - 1.}\end{array}} \right.\)

Giải hai hệ phương trình trên, ta được 4 nghiệm của hệ phương trình đã cho là

\(\begin{array}{l}\left( {1 + \sqrt 2 ;1 - \sqrt 2 } \right),\left( {1 - \sqrt 2 ;1 - \sqrt 2 } \right)\\\left( { - 1 + \sqrt 2 ; - 1 - \sqrt 2 } \right),\left( { - 1 + \sqrt 2 ; - 1 - \sqrt 2 } \right)\end{array}\)

b. Giả sử (x ; y) = (x0; y0) là nghiệm duy nhất của hệ. Do hệ phương trình đã cho là hệ phương trình đối xứng đối với các ẩn nên nó cũng có nghiệm là (x ; y) = (y0 ; x0). Từ tính duy nhất của hệ ta suy ra x0 = y0. Do đó

\(\eqalign{& \left\{ {\matrix{{x_0^2 + y_0^2 = 2\left( {{\rm{a}} + 1} \right)} \cr {{{\left( {{x_0} + {y_0}} \right)}^2} = 4} \cr} } \right. \cr & \Rightarrow \left\{ {\matrix{{2x_0^2 = 2\left( {{\rm{a}} + 1} \right)} \cr {4x_0^2 = 4} \cr} } \right. \Rightarrow a = 0. \cr} \)

Ngược lại, nếu a = 0 thì hệ trở thành \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 2}\\{{{\left( {{\rm{x}} + y} \right)}^2} = 4.}\end{array}} \right.\)

Tuy nhiên, hệ này có nghiệm không duy nhất (dễ thấy hai nghiệm nó là (1 ; 1) và (-1 ; -1). Vậy không có giá trị nào của a thỏa mãn điều kiện của đầu bài.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan