Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 37 trang 121 Sách bài tập Hình học 11 Nâng cao

Bình chọn:
3.5 trên 6 phiếu

Giải bài tập Câu 37 trang 121 Sách bài tập Hình học 11 Nâng cao

Cho hình chóp S.ABCD có đáy là hình thoi, đường chéo AC = 4a, đường chéo BD = 2a; O là giao điểm của AC với BD và SO vuông góc với mặt phẳng (ABC), SO = h. Một mặt phẳng (α) đi qua điểm A và vuông góc với đường thẳng SC tại điểm C1. Tìm hệ thức liên hệ giữa a và h để điểm C1 nằm trong đoạn thẳng SC, C1 khác S và khác C. Khi đó, tính diện tích thiết diện của hình chóp S.ABCD cắt bởi mp(α).

Trả lời

 

Vì \(\left( \alpha  \right) \bot SC\) và  \(A \in \left( \alpha  \right)\) nên \(A{C_1} \bot SC\). Mặt khác, gọi \({B_1}{D_1} = \left( \alpha  \right) \cap \left( {SBD} \right)\) thì B1D1 song song với BD và B1D1 qua \({O_1} = A{C_1} \cap SO\) (do \(B{\rm{D}} \bot SC,\left( \alpha  \right) \bot SC\) nên BD // (α)).

Vì SAC là tam giác cân tại S và \(A{C_1} \bot SC\) nên C1 thuộc SC khi và chỉ khi \(\widehat {ASC} < {90^0}\) tức là \(\widehat {OSC} < {45^0}\). Xét tam giác vuông SOC, điều kiện \(\widehat {OSC} < {45^0}\) tương  đương với \(SO > OC = {{AC} \over 2} = 2a\). Vậy để C1 thuộc SC, C1 không trùng với C và S thì hệ thức liên hệ giữa h và a là h > 2a.

Dễ thấy thiết diện của S.ABCD khi cắt bởi (α) là tứ giác AB1C1D1 có tính chất \(A{C_1} \bot {B_1}{D_1}\) . Do đó \({S_{A{B_1}{C_1}{D_1}}} = {1 \over 2}A{C_1}.{B_1}{D_1}\).

Ta có:

\(\eqalign{  & A{C_1}.SC = SO.AC \Rightarrow A{C_1} = {{4{\rm{a}}h} \over {\sqrt {4{{\rm{a}}^2} + {h^2}} }};  \cr  & {{{B_1}{D_1}} \over {B{\rm{D}}}} = {{S{O_1}} \over {SO}}, \cr} \)

mặt khác

\(\eqalign{  & {{{O_1}O} \over {CO}} = {{AO} \over {SO}}  \cr  &  \Rightarrow {O_1}O = {{4{{\rm{a}}^2}} \over h}  \cr  &  \Rightarrow S{O_1} = {{{h^2} - 4{a^2}} \over h} \cr} \)

Từ đó \({{{B_1}{D_1}} \over {B{\rm{D}}}} = {{{h^2} - 4{{\rm{a}}^2}} \over {{h^2}}}\)

hay \({B_1}{D_1} = {{2{\rm{a}}\left( {{h^2} - 4{{\rm{a}}^2}} \right)} \over {{h^2}}}\)

Vậy

\(\eqalign{  & {S_{A{B_1}{C_1}{D_1}}} = {1 \over 2}.{{4{\rm{a}}h} \over {\sqrt {4{{\rm{a}}^2} + {h^2}} }}.{{2{\rm{a}}\left( {{h^2} - 4{{\rm{a}}^2}} \right)} \over {{h^2}}}  \cr  &  = {{4{{\rm{a}}^2}\left( {{h^2} - 4{{\rm{a}}^2}} \right)} \over {h\sqrt {4{{\rm{a}}^2} + {h^2}} }} \cr} \)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan