Xem thêm: Ôn tập Chương II - Hàm số bậc nhất
Cho các hàm số :
\(y = 2x - 2\); (d1)
\(y = - {4 \over 3}x - 2\); (d2)
\(y = {1 \over 3}x + 3\). (d3)
a) Vẽ đồ thị của các hàm số đã cho trên cùng một mặt phẳng tọa độ .
b) Gọi giao điểm của đường thẳng (d3) với (d1) và (d2) theo thứ tự là A, B. Tìm tọa độ của A, B
c) Tính khoảng cách AB.
Gợi ý làm bài:
a) *Vẽ đồ thị hàm số y = 2x -2 (d1)
Cho x = 0 thì y = - 2 . Ta có :
Cho y = 0 thì 2x – 2 = 0 \( \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\). Ta có: (1; 0)
Đồ thị hàm số đi qua hai điểm (0; 2) và (1; 0)
*Vẽ đồ thị hàm số \(y = - {4 \over 3}x - 2\) (d2)
Cho x = 0 thì y = -2. Ta có:
Cho y = 0 thì \( - {4 \over 3}x - 2 = 0 \Leftrightarrow x = - 1,5\) . Ta có: \(\left( { - 1,5;0} \right)\)
Đồ thị hàm số đi qua hai điểm \(\left( {0; - 2} \right)\) và \(\left( { - 1,5;0} \right)\)
* Vẽ đồ thị hàm số \(y = {1 \over 3}x + 3\) (d3)
Cho x = 0 thì y = 3. Ta có: (0;3)
Cho y = 0 thì \({1 \over 3}x + 3 = 0 \Leftrightarrow x = - 9\). Ta có: (-9; 0)
Đồ thị hàm số đi qua hai điểm (0; 3) và (-9; 0)
b) Phương trình hoành độ giao điểm của (d1) và (d3) :
\(\eqalign{
& 2x - 2 = {1 \over 3}x + 3 \cr
& \Leftrightarrow 2x - {1 \over 3}x = 3 + 2 \cr
& \Leftrightarrow {5 \over 3}x = 5 \Leftrightarrow x = 3 \cr} \)
Tung độ giao điểm: \(y = 2.3 - 2 \Leftrightarrow y = 6 - 2 = 4\)
Vậy tọa độ điểm A là : A(3; 4)
Phương trình hoành độ giao điểm của (d2) và (d3):
\(\eqalign{
& - {4 \over 3}x - 2 = {1 \over 3}x + 3 \cr
& \Leftrightarrow {1 \over 3}x + {4 \over 3}x = - 2 - 3 \cr
& \Leftrightarrow {5 \over 3}x = - 5 \Leftrightarrow x = - 3 \cr} \)
Tung độ giao điểm :
\(y = {1 \over 3}.\left( { - 3} \right) + 3 \Leftrightarrow y = - 1 + 3 = 2\)
Vậy tọa độ điểm B là : B(-3 ; 2)
c) Ta có:
\(\eqalign{
& A{B^2} = {\left( {{x_A} - {x_B}} \right)^2} + {\left( {{y_A} - {y_B}} \right)^2} \cr
& = {\left( {3 + 3} \right)^2} + {\left( {4 - 2} \right)^2} = 40 \cr
& AB = \sqrt {40} = 2\sqrt {10} \cr} \).
Sachbaitap.com
>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục