Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.83 trang 99 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Hãy tính tổng sau:

Cho dãy số \(({u_n})\) với \({u_n} = {{{2^n} - {5^n}} \over {{2^n} + {5^n}}},\) và số nguyên dương N. Hãy tính tổng sau:

                                     \({S_N} = {1 \over {{u_1} - 1}} + {1 \over {{u_2} - 1}} + .... + {1 \over {{u_N} - 1}}.\)

Giải

Với mỗi \(n \ge 1,\) ta có

                  \({1 \over {{u_n} - 1}} =  - {1 \over 2}\left( {{{{2^n}} \over {{5^n}}} + 1} \right)\)

Do đó: \({S_N} =  - {1 \over 2}\left( {{T_N} + N} \right),\) trong đó \({T_N} = {2 \over 5} + {{{2^2}} \over {{5^2}}} + ... + {{{2^N}} \over {{5^N}}}\)

Dễ thấy, \({T_N}\) là tổng N số hạng đầu tiên của một cấp số nhân có số hạng đầu bằng \({2 \over 5}\) và công bội bằng \({2 \over 5}\). Vì thế

             \({T_N} = {2 \over 5} \times {{1 - {{\left( {{2 \over 5}} \right)}^N}} \over {1 - {2 \over 5}}} = {2 \over 3} \times {{{5^N} - {2^N}} \over {{5^N}}}\)

Suy ra: 

\({S_N} =  - {1 \over 2}\left( {{2 \over 3} \times {{{5^N} - {2^N}} \over {{5^N}}} + N} \right) = {{ - \left( {2 + 3N} \right){{.5}^N} + {2^{N + 1}}} \over {{{6.5}^N}}}\)

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan