Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.83 trang 99 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Hãy tính tổng sau:

Cho dãy số \(({u_n})\) với \({u_n} = {{{2^n} - {5^n}} \over {{2^n} + {5^n}}},\) và số nguyên dương N. Hãy tính tổng sau:

                                     \({S_N} = {1 \over {{u_1} - 1}} + {1 \over {{u_2} - 1}} + .... + {1 \over {{u_N} - 1}}.\)

Giải

Với mỗi \(n \ge 1,\) ta có

                  \({1 \over {{u_n} - 1}} =  - {1 \over 2}\left( {{{{2^n}} \over {{5^n}}} + 1} \right)\)

Do đó: \({S_N} =  - {1 \over 2}\left( {{T_N} + N} \right),\) trong đó \({T_N} = {2 \over 5} + {{{2^2}} \over {{5^2}}} + ... + {{{2^N}} \over {{5^N}}}\)

Dễ thấy, \({T_N}\) là tổng N số hạng đầu tiên của một cấp số nhân có số hạng đầu bằng \({2 \over 5}\) và công bội bằng \({2 \over 5}\). Vì thế

             \({T_N} = {2 \over 5} \times {{1 - {{\left( {{2 \over 5}} \right)}^N}} \over {1 - {2 \over 5}}} = {2 \over 3} \times {{{5^N} - {2^N}} \over {{5^N}}}\)

Suy ra: 

\({S_N} =  - {1 \over 2}\left( {{2 \over 3} \times {{{5^N} - {2^N}} \over {{5^N}}} + N} \right) = {{ - \left( {2 + 3N} \right){{.5}^N} + {2^{N + 1}}} \over {{{6.5}^N}}}\)

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan