Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 41 trang 243 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 41 trang 243 SBT Đại số 10 Nâng cao

a) Với các giá trị nào của \(\alpha \)thì biểu thức sau đây có nghĩa?

\(\dfrac{{\sin \alpha  + \sin 3\alpha  + \sin 5\alpha  + \sin 7\alpha }}{{\cos \alpha  + \cos 3\alpha  + \cos 5\alpha  + \cos 7\alpha }}\)

b) Chứng minh rằng với các giá trị đó của \(\alpha \) thì biểu thức đã cho bằng \(\tan 4\alpha \).

Giải:

a) \(\alpha  \ne \dfrac{\pi }{2} + k\pi ;\) \(\alpha  \ne \dfrac{\pi }{4} + k\dfrac{\pi }{2};\) \(\alpha  \ne \dfrac{\pi }{8} + k\dfrac{\pi }{4}\) với \(k \in Z\)

Có thể viết mẫu thành:

\(\begin{array}{l}\left( {\cos \alpha  + \cos 7\alpha } \right) + \left( {\cos 3\alpha  + \cos 5\alpha } \right)\\ = 2\cos 4\alpha \left( {\cos 3\alpha  + \cos \alpha } \right)\\ = 4\cos \alpha \cos 2\alpha \cos 4\alpha \end{array}\)

b) Viết tử thức thành \(2\sin 4\alpha \left( {\cos 3\alpha  + \cos \alpha } \right)\).

Sachbaitap.com

Bài viết liên quan