Tìm số phức z thỏa mãn đồng thời
\(\left| {{{z - 1} \over {z - i}}} \right| = 1\) và \(\left| {{{z - 3i} \over {z + i}}} \right| = 1\)
Giải
Dễ thấy rằng tập hợp các điểm M của mặt phẳng phức biểu diễn các số z thỏa mãn \(\left| {{{z - {z_0}} \over {z - {z_1}}}} \right| = 1 ({z_0},{z_1}\) là hai số phức phân biệt cho trước) là đường trung trực của đoạn thẳng \({A_0}{A_1} ({A_0},{A_1}\) theo thứ tự biểu diễn \({z_0},{z_1}\)).
Vậy điều kiện \(\left| {{{z - 1} \over {z - i}}} \right| = 1\) chứng tỏ điểm M biểu diễn số z phải nằm trên đường phân giác y = x ( viết \(z = x + yi\) (\(x,y \in R)\)). Còn điều kiện \(\left| {{{z - 3i} \over {z + i}}} \right| = 1\) chứng tỏ phần ảo của z phải bằng 1. Vậy z = 1 + i.
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục