Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.49 trang 184 sách bài tập Giải tích 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Xét hệ phương trình

Giải hệ phương trình hai phức z, w sau: \(\left\{ \matrix{ {z^3} + {{\rm{w}}^5} = 0 \hfill \cr {z^2}{\left( {{\rm{\bar w}}} \right)^4} = 1 \hfill \cr}  \right.\)Giải

Xét hệ phương trình \(\left\{ \matrix{{z^3} + {{\rm{w}}^5} = 0(1) \hfill \cr{z^2}{\left( {{\rm{\bar w}}} \right)^4} = 1(2) \hfill \cr}  \right.\)  

Từ (2) suy ra \({z^6}{(\overline {\rm{w}} )^{12}} = 1\)

Từ (1) suy ra \({z^6} = {{\rm{w}}^{10}}\)

Vậy \({{\rm{w}}^{10}}{(\overline {\rm{w}} )^{12}} = 1\). Từ đó  \({\left| {\rm{w}} \right|^{22}} = 1\) tức là \(\left| {\rm{w}} \right| = 1\); suy ra \(\left| {{z^6}} \right| = {\left| {\rm{w}} \right|^{10}}=1\) tức là \(\left| z \right| = 1\)

Từ \({\rm{w}} = {1 \over {\rm{\overline w}}}\) và \({{\rm{w}}^{10}}{\left( {{\rm{\overline  w}}} \right)^{12}} = 1\) suy ra \({\left( {{\rm{\bar w}}} \right)^2} = 1\) nên w bằng 1 hoặc bằng -1.

Từ \({\left( {{\rm{\overline  w}}} \right)^2} = 1\) và (2) suy ra \({z^2} = 1\) tức z bằng 1 hoặc bằng -1.

Từ (1) suy ra hệ có hai nghiệm là (1;-1) và (-1;1).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan