Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.7 trang 177 sách bài tập Giải tích 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho A, B là hai điểm trong mặt phẳng phức theo thứ tự biểu diễn các số phức

Cho A, B là hai điểm trong mặt phẳng phức theo thứ tự biểu diễn các số phức \({z_0},{z_1}\) khác 0 thảo mãn đẳng thức \(z_0^2 + z_1^2 = {z_0}{z_1}\). Chứng minh rằng tam giác OAB là tam giác đều (O là gốc tọa độ).

Giải

Ta có:

\(\eqalign{& z_0^2 + z_1^2 = {z_0}{z_1} \Rightarrow {z_0}\left( {{z_1} - {z_0}} \right) = z_1^2 \cr&\Rightarrow \left| {{z_0}} \right|\left| {{z_1} - {z_0}} \right| = {\left| {{z_1}} \right|^2}  \cr & z_0^2 + z_1^2 = {z_0}{z_1} \Rightarrow {z_1}\left( {{z_0} - {z_1}} \right) = z_0^2 \cr&\Rightarrow \left| {{z_1}} \right|\left| {{z_1} - {z_0}} \right| = {\left| {{z_0}} \right|^2} \cr} \)

 

Vậy   \(\left| {{z_1} - {z_0}} \right| = {{{{\left| {{z_1}} \right|}^2}} \over {\left| {{z_0}} \right|}} = {{{{\left| {{z_0}} \right|}^2}} \over {\left| {{z_1}} \right|}},\) suy ra \({\left| {{z_0}} \right|^3} = {\left| {{z_1}} \right|^3}\)

Do đó \(\left| {{z_0}} \right| = \left| {{z_1}} \right| = \left| {{z_1} - {z_0}} \right|\)  tức là OA = OB = AB (khác 0).

Vậy tam giác OAB là tam giác đều.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan