Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 48 trang 60 Sách Bài tập Hình học 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho tứ diện ABCD. Hai điểm M, N lần lượt thay đổi trên hai cạnh AB và CD. Tìm tập hợp trung điểm I của MN.

48. Trang 60 Sách Bài tập Hình học 11 Nâng cao

Cho tứ diện ABCD. Hai điểm M, N lần lượt thay đổi trên hai cạnh AB và CD. Tìm tập hợp trung điểm I của MN.

Giải

Phần thuận. Giả sử I là trung điểm của MN. Gọi P, Q, R, S lần lượt là trung điểm của BC, CA, AD và DB. Vì:

\({{PB} \over {IM}} = {{PC} \over {IN}} = {{BC} \over {MN}}\)

Nên BM, PI, CN cùng song song với một mặt phẳng, mặt phẳng này song song với AB và CD. Gọi \(\left( \alpha  \right)\) là mặt phẳng qua P và song song với mặt phẳng đó thì rõ ràng \(I \in \left( \alpha  \right)\). Mặt phẳng này cắt tứ diện ABCD theo thiết diện là hình bình hành PQRS. Vì M chỉ chạy trên đoạn AB, N chỉ di động trên CD nên điểm I luôn nằm trong tứ diện, tức là I luôn nằm trong hình bình hành PQRS.

Phần đảo. Lấy một điểm I nằm trong hình hình bình hành PQRS. Qua I có một đường thẳng cắt hai cạnh AB và CD tại M và N. Theo định lí Ta-lét thì I là trung điểm của MN.

Vậy tập hợp các điểm I là hình bình hành PQRS (cùng với các điểm trong của nó).

sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan