Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 81 trang 129 Sách bài tập Hình học 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 81 trang 129 Sách bài tập Hình học 11 Nâng cao

Cho hai nửa mặt phẳng (P) và (Q) vuông góc với nhau theo giao tuyến ∆. Trên ∆ lấy hai điểm A, B cố định với \(AB = a\sqrt 2 \) (a là độ dài cho trước). Trên nửa đường thẳng Ax vuông góc với ∆ và ở trong (P) lấy điểm M khác A. Đặt AM = m. Trên nửa đường thẳng By vuông góc với ∆ và trong (Q) lấy điểm N sao cho \(BN = {{{a^2}} \over m}\).

a) Chứng minh các mặt của tứ diện ABMN là các tam giác vuông.

b) Với giá trị nào của m thì MN có độ dài bé nhất? Tính giá trị đó.

c) Chứng minh rằng chân mỗi đường cao của tứ diện đó xuất phát từ A và B nằm trên đường tròn cố định khi M thay đổi.

Trả lời

 

a) Vì \(\left( P \right) \bot \left( Q \right),\left( P \right) \cap \left( Q \right) = AB,\)

\(M \in \left( P \right),MA \bot AB\) nên \(MA \bot \left( Q \right)\). Do đó MAB, MAN là các tam giác vuông tại A.

Tương tự như trên, các tam giác MBN, ABN vuông tại B.

b) Vì

\(\eqalign{  & M{N^2} = M{A^2} + A{B^2} + B{N^2}  \cr  &  = {m^2} + 2{a^2} + {{{a^4}} \over {{m^2}}} \cr} \)

Từ đó MN có độ dài bé nhất khi và chỉ khi \({m^2} + {{{a^4}} \over {{m^2}}}\) bé nhất.

Mặt khác \({m^2}.{{{a^4}} \over {{m^2}}} = {a^4}\).

Vậy MN có độ dài bé nhất khi và chỉ khi:

\({m^2} = {{{a^4}} \over {{m^2}}} \Leftrightarrow m = a\).

c) Vì \(\left( {MAB} \right) \bot \left( {NMB} \right)\) nên khi kẻ AA1 vuông góc với BM tại A1 thì \(A{A_1} \bot \left( {BMN} \right)\), tức A­1 là chân đường cao của tứ diện ABMN kẻ từ đỉnh A.

Như vậy A1 thuộc (P) và \(\widehat {B{A_1}A} = {90^0}\), từ đó A1 thuộc đường tròn đường kính AB trong (P). Đường tròn này cố định.

Tương tự như trên, chân đường cao Bkẻ từ đỉnh B của tứ diện ABMN cũng thuộc đường tròn đường kính AB nằm trong mặt phẳng (Q).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan