Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 9.5, 9.6, 9.7 trang 24 Sách Bài Tập (SBT) Toán lớp 6 tập 2

Bình chọn:
4 trên 30 phiếu

Tính nhanh.

Câu 9.5 trang 24 Sách Bài Tập (SBT) Toán lớp 6 tập 2

Tính nhanh \(B = {1 \over {15}} + {1 \over {35}} + {1 \over {63}} + {1 \over {99}} + {1 \over {143}}\)

Giải

\(B = {1 \over {15}} + {1 \over {35}} + {1 \over {63}} + {1 \over {99}} + {1 \over {143}}\)

\(\eqalign{
& = {1 \over 2}\left( {{2 \over {3.5}} + {2 \over {5.7}} + {2 \over {7.9}} + {2 \over {9.11}} + {2 \over {11.13}}} \right) \cr
& = {1 \over 2}\left( {{{5 - 3} \over {3.5}} + {{7 - 5} \over {5.7}} + {{9 - 7} \over {7.9}} + {{11 - 9} \over {9.11}} + {{13 - 11} \over {11.13}}} \right) \cr
& = {1 \over 2}\left( {{1 \over 3} - {1 \over 5} + {1 \over 5} - {1 \over 7} + {1 \over 7} - {1 \over 9} + {1 \over 9} - {1 \over {11}} + {1 \over {11}} - {1 \over {13}}} \right) \cr
& = {1 \over 2}.\left( {{1 \over 3} - {1 \over {13}}} \right) \cr
& = {1 \over 2}.{{10} \over {39}} = {5 \over {39}} \cr} \)

Câu 9.6 trang 24 Sách Bài Tập (SBT) Toán lớp 6 tập 2

Tính nhanh \(C = {1 \over 2} + {1 \over {14}} + {1 \over {35}} + {1 \over {65}} + {1 \over {104}} + {1 \over {152}}\)

Giải

\(C = {1 \over 2} + {1 \over {14}} + {1 \over {35}} + {1 \over {65}} + {1 \over {104}} + {1 \over {152}}\)

\(C = {2 \over 4} + {2 \over {28}} + {2 \over {70}} + {2 \over {130}} + {2 \over {208}} + {2 \over {304}}\)

\(\eqalign{
& = {2 \over {1.4}} + {2 \over {4.7}} + {2 \over {7.10}} + {2 \over {10.13}} + {2 \over {13.16}} + {2 \over {16.19}} \cr
& = {2 \over 3}.\left( {{2 \over {1.4}} + {2 \over {4.7}} + {2 \over {7.10}} + {2 \over {10.13}} + {2 \over {13.16}} + {2 \over {16.19}}} \right) \cr
& = {2 \over 3}\left( {{{4 - 1} \over {1.4}} + {{7 - 4} \over {4.7}} + {{10 - 7} \over {7.10}} + {{13 - 10} \over {10.13}} + {{16 - 13} \over {13.16}} + {{19 - 16} \over {16.19}}} \right) \cr
& = {2 \over 3}.\left( {1 - {1 \over 4} + {1 \over 4} - {1 \over 7} + {1 \over 7} - {1 \over {10}} + {1 \over {10}} - {1 \over {13}} + {1 \over {13}} - {1 \over {16}} + {1 \over {16}} - {1 \over {19}}} \right) \cr
& = {2 \over 3}.\left( {1 - {1 \over {19}}} \right) \cr
& = {2 \over 3}.{{18} \over {19}} = {{12} \over {19}} \cr} \)

Câu 9.7 trang 24 Sách Bài Tập (SBT) Toán lớp 6 tập 2

Chứng tỏ rằng \(D = {1 \over {{2^2}}} + {1 \over {{3^2}}} + {1 \over {{4^2}}} + ... + {1 \over {{{10}^2}}} < 1\)

Giải

\(D = {1 \over {{2^2}}} + {1 \over {{3^2}}} + {1 \over {{4^2}}} + ... + {1 \over {{{10}^2}}} < {1 \over {1.2}} + {1 \over {2.3}} + {1 \over {3.4}} + ... + {1 \over {9.10}}\)

\(D< 1 - {1 \over 2} + {1 \over 2} - {1 \over 3} + ... + {1 \over 9} - {1 \over {10}}\)

\(D< 1 - {1 \over {10}} = {9 \over {10}} < 1\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 6 - Xem ngay

>> Học trực tuyến lớp 6 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh, Địa cùng các thầy cô nổi tiếng, dạy hay dễ hiểu

Bài viết liên quan