Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu I.2 trang 123 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
4.3 trên 6 phiếu

Cho hình vuông ABCD có cạnh bằng 2a.

 Cho hình vuông ABCD có cạnh bằng 2a. Gọi M, N lần lượt là trung điểm của BC, CD. Tính cos \(\widehat {MAN}\)

Gợi ý làm bài

(h.bs.19). 

Kẻ đường cao MH của tam giác cân AMN. Ta có \(\sin \widehat {NAM} = {{HM} \over {AM}}\) và diện tích tam giác AMN là:

\(\eqalign{
& {S_{AMN}} = {1 \over 2}AN.MH = {1 \over 2}AN.AM\sin \widehat {NAM} \cr
& = {1 \over 2}A{N^2}\sin \widehat {NAM} \cr} \)

\( = {1 \over 2}(A{D^2} + D{N^2})\sin \widehat {NAM} = {{5{a^2}} \over 2}\sin \widehat {NAM}.\)

Mặt khác:

\(\eqalign{
& {S_{AMN}} = {S_{ABCD}} - {S_{ABM}} - {S_{ADM}} - {S_{MNC}} \cr
& = 4{a^2} - 2{a^2} - {{{a^2}} \over 2} = {{3{a^2}} \over 2}. \cr} \)

Suy ra \(\sin \widehat {NAM} = {3 \over 5}\)

Từ đó: 

\(\cos \widehat {NAM} = \sqrt {1 - {{\sin }^2}\widehat {NAM}}  = \sqrt {1 - {9 \over {25}}}  = {4 \over 5}.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan