Bài 1 trang 13 SBT Toán 10 - Chân trời sáng tạo
Viết các tập hợp sau dưới dạng liệt kê các phần tử
a) \(A = \left\{ {x\left| {{x^2} - 2x - 15 = 0} \right.} \right\}\)
b) \(B = \left\{ {x \in \mathbb{Z}\left| { - 3 < x \le 2} \right.} \right\}\)
c) \(C = \left\{ {\frac{n}{{{n^2} - 1}}\left| {n \in \mathbb{N},1 < n \le 4} \right.} \right\}\)
d) \(D = \left\{ {\left( {x;y} \right)\left| {x \le 2,y < 2,x,y \in \mathbb{N}} \right.} \right\}\)
Lời giải:
a) Giải phương trình x2 – 2x – 15 = 0 ta được hai nghiệm là x = – 3 và x = 5.
Do đó, A = {– 3; 5}.
b) Vì x ∈ ℤ và – 3 < x ≤ 2 nên x là các số nguyên lớn hơn – 3 và nhỏ hơn hoặc bằng 2, đó là các số: – 2; – 1; 0; 1; 2.
Do đó, B = {– 2; – 1; 0; 1; 2}.
c) Ta có n là số tự nhiên lớn hơn 1 và nhỏ hơn hoặc bằng 4, đó là các số: 2; 3; 4.
d) Ta có x và y là các số tự nhiên, x nhỏ hơn hoặc bằng 2 nên x là các số 0; 1; 2, y nhỏ hơn 2 nên y là các số 0; 1.
Vậy ta có các cặp số (x; y) thỏa mãn D là: (0; 0); (0; 1); (1; 0); (1; 1); (2; 0); (2; 1).
Do đó, D = {(0; 0); (0; 1); (1; 0); (1; 1); (2; 0); (2; 1)}.
Bài 2 trang 13 SBT Toán 10 - Chân trời sáng tạo
Viết các tập hợp sau đây bằng cách chỉ ra tính chất đặc trung của các phần tử:
a) \(A = \left\{ { - 4; - 3; - 2; - 1;0;1;2;3;4} \right\}\)
b) \(B = \left\{ {0;2;4;6;8;10} \right\}\)
c) \(C = \left\{ {1;\frac{1}{2};\frac{1}{3};\frac{1}{4};\frac{1}{5}} \right\}\)
d) Tập hợp D các số thực lớn hơn hoặc bằng 3 và bé hơn 8
Lời giải:
a) Các số – 4; – 3; – 2; – 1; 0; 1; 2; 3; 4 là các số nguyên lớn hơn hoặc bằng – 4 và bé hơn hoặc bằng 4.
Do đó, A = {x ∈ ℤ | – 4 ≤ x ≤ 4}.
Ngoài ra, ta có thể viết tập hợp A bằng các cách như sau:
A = {x ∈ ℤ | |x| ≤ 4} hoặc A = {x ∈ ℤ | |x| < 5}.
b) Các số 0; 2; 4; 6; 8; 10 là các số tự nhiên chẵn nhỏ hơn hoặc bằng 10.
Do đó, B = {x | x ∈ ℕ, x chẵn, x ≤ 10} hoặc B = {x | x = 2k, k = 0; 1; 2; 3; 4; 5}.
d) Tập hợp D các số thực lớn hơn hoặc bằng 3 và bé hơn 8.
Bài 3 trang 13 SBT Toán 10 - Chân trời sáng tạo
Điền kí hiệu \(\left( { \in , \notin , \subset , \not\subset , = } \right)\) thích hợp vào chỗ chấm
a) \(0...\left\{ {0;1;2} \right\}\)
b) \(\left\{ {0;1} \right\}...\mathbb{Z}\)
c) \(0...\left\{ {x\left| {{x^2} = 0} \right.} \right\}\)
d) \(\left\{ 0 \right\}...\left\{ {x\left| {{x^2}} \right. = x} \right\}\)
e) \(\emptyset ...\left\{ {x \in \mathbb{R}\left| {{x^2} + 4 = 0} \right.} \right\}\)
g) \(\left\{ {4;1} \right\}...\left\{ {x\left| {{x^2} - 5x + 4 = 0} \right.} \right\}\)
h) \(\left\{ {n;a;m} \right\}...\left\{ {m;a;n} \right\}\)
i) \(\left\{ {nam} \right\}...\left\{ {n;a;m} \right\}\)
Phương pháp:
+) Tập hợp không có phần tử nào gọi là tập hợp rỗng, kí hiệu \(\emptyset \)
+) Phần tử a thuộc tập hợp A thì ta viết \(a \in A\), ngược lại \(a \notin A\)
+) A là tập hợp con của B nếu mọi phần tử của A đều là phần tử của B, kí hiệu \(A \subset B\), ngược lại \(A \not\subset B\)
+) Hai tập hợp A và B gọi là bằng nhau nếu \(A \subset B\)và \(B \subset A\)
Lời giải:
Kí hiệu ∈ (thuộc), ∉ (không thuộc) dùng để chỉ mối quan hệ giữa phần tử và tập hợp.
Kí hiệu ⊂ (tập con), ⊄ (không là tập con) dùng để chỉ mối quan hệ giữa hai tập hợp.
Kí hiệu = dùng để chỉ hai phần tử bằng nhau hoặc hai tập hợp bằng nhau.
a) 0 là một phần tử của tập {0; 1; 2}.
Do đó, 0 ∈ {0; 1; 2}.
b) {0; 1} là một tập hợp gồm hai phần tử là các số nguyên 0; 1 nên {0; 1} là tập con của tập số nguyên ℤ.
Do đó, {0; 1} ⊂ ℤ.
c) Ta có: x2 = 0 ⇔ x = 0 nên {x | x2 = 0} = {0}.
Do đó, 0 ∈ {x | x2 = 0}.
d) Ta có: x2 = x ⇔ x2 – x = 0 ⇔ x(x – 1) = 0 ⇔ x = 0 hoặc x = 1.
Suy ra {x | x2 = x} = {0; 1}.
Tập hợp {0} chứa phần tử 0 là một phần tử của tập hợp {0; 1}.
Do đó, {0} ⊂ {x | x2 = x}.
e) Với mọi số thực x, ta có x2 + 4 > 0 nên phương trình x2 + 4 = 0 vô nghiệm.
Suy ra {x ∈ ℝ | x2 + 4 = 0} = ∅.
Hay ∅ = {x ∈ ℝ | x2 + 4 = 0}.
g) Ta có: x2 – 5x + 4 = 0 ⇔ x2 – x – 4x + 4 = 0
⇔ x(x – 1) – 4(x – 1) = 0 ⇔ (x – 1)(x – 4) = 0 ⇔ x = 1 hoặc x = 4.
Suy ra {x | x2 – 5x + 4 = 0} = {1; 4}.
Hay {4; 1} = {x | x2 – 5x + 4 = 0}.
h) Hai tập hợp {m; a; n} và {m; a; n} đều có các phần tử giống nhau nên đây là hai tập hợp bằng nhau.
Do đó, {n; a; m} = {m; a; n}.
i) Tập hợp {nam} gồm một phần tử là nam, tập hợp {n; a; m} gồm ba phần tử là n, a, m, khác phần tử nam.
Do đó, {nam} ⊄ {n; a; m}.
Bài 4 trang 13 SBT Toán 10 - Chân trời sáng tạo
Điền kí hiệu \(\left( { \subset , \supset , = } \right)\) thích hợp vào chỗ chấm
a) \(\left\{ {x\left| {x\left( {x - 1} \right)\left( {x + 1} \right) = 0} \right.} \right\}...\left\{ {x\left| {\left| x \right| < 2,x \in \mathbb{Z}} \right.} \right\}\)
b) \(\{3;6;9\}...\{ x \in \mathbb{N} | x\) là ước của 18 \(\}\)
c) \(\left\{ {x\left| {x = 5k;k \in } \right.} \right\}...\{ x \in \mathbb{N} | x\) là bội của 5 \(\}\)
d) \(\left\{ {4k\left| {k \in \mathbb{N}} \right.} \right\}...\left\{ {x\left| {x = 2m,m \in \mathbb{N}} \right.} \right\}\)
Phương pháp:
Bước 1: Xác định tập hợp cần so sánh
Bước 2: So sánh hai tập hợp
+) A là tập hợp con của B nếu mọi phần tử của A đều là phần tử của B, kí hiệu \(A \subset B\), ngược lại \(A \not\subset B\)
+) Hai tập hợp A và B gọi là bằng nhau nếu \(A \subset B\)và \(B \subset A\)
Lời giải:
a) Ta có: x(x – 1)(x + 1) = 0 ⇔ x = 0 hoặc x = 1 hoặc x = – 1.
Do đó, {x | x(x – 1)(x + 1) = 0} = {– 1; 0; 1}. (1)
Lại có: các số nguyên x, sao cho |x| < 2 thì |x| = 0, |x| = 1 hay x = 0, x = 1, x = – 1.
Do đó, {x | |x| < 2, x ∈ ℤ} = {– 1; 0; 1}. (2)
Từ (1) và (2) suy ra {x | x(x – 1)(x + 1) = 0} = {x | |x| < 2, x ∈ ℤ}.
b) Các số tự nhiên là ước của 18 là: 0; 2; 3; 6; 9; 18.
Do đó, {x ∈ ℕ | x là ước của 18} = {0; 2; 3; 6; 9; 18}.
Vậy {3; 6; 9} ⊂ {x ∈ ℕ | x là ước của 18}.
c) Ta có: x = 5k, k ∈ ℕ, do đó x là các số tự nhiên chia hết cho 5 hay x là bội của 5.
Do đó, {x | x = 5k, k ∈ ℕ} = { x ∈ ℕ | x là bội của 5}.
d) Tập hợp {4k | k ∈ ℕ} gồm các số tự nhiên chia hết cho 4, tập hợp {x | x = 2m, m ∈ ℕ} gồm các số tự nhiên chia hết cho 2. Một số tự nhiên chia hết cho 4 thì chia hết cho 2, nhưng một số tự nhiên chia hết cho 2 thì chưa chắc đã chia hết cho 4.
Do đó, {4k | k ∈ ℕ} ⊂ {x | x = 2m, m ∈ ℕ}.
Bài 5 trang 13 SBT Toán 10 - Chân trời sáng tạo
Hãy chỉ ra các quan hệ bao hàm giữa các tập hợp sau và vẽ đồ thị Ven dể biểu diễn các quan hệ đó
a) A = {x | x là tứ giác}
b) B = {x | x là hình vuông}
c) C = {x | x là hình chữ nhật}
d) D = {x | x là hình bình hành}
Phương pháp:
Hai tập hợp A và B được gọi là quan hệ bao hàm nếu \(A \subset B\) hoặc \(B \supset A\)
Lời giải:
Ta có hình vuông, hình chữ nhật, hình bình hành đều là các tứ giác nên các tập hợp B, C, D đều là tập con của tập A.
Do đó ta có các quan hệ bao hàm, B ⊂ A, C ⊂ A, D ⊂ A. (1)
Lại có hình chữ nhật là hình bình hành nên các phần tử của tập hợp C đều là phần tử của tập hợp D, do đó C ⊂ D. (2).
Mà hình vuông là hình chữ nhật nên các phần tử của tập hợp B đều là các phần tử của tập hợp C, do đó B ⊂ C. (3)
Từ (1), (2), (3) và theo tính chất bắc cầu, ta suy ra quan hệ bao hàm: B ⊂ C ⊂ D ⊂ A.
Ta vẽ biểu đồ Ven như sau:
Bài 6 trang 13 SBT Toán 10 - Chân trời sáng tạo
Tìm tất cả các tập hợp A thỏa mãn điều kiện \(\left\{ {a;b} \right\} \subset A \subset \left\{ {a;b;c;d} \right\}\)
Lời giải:
Ta có: {a; b} ⊂ A nên tập hợp {a; b} là tập con của tập hợp A, do đó các phần tử của tập {a; b} đều là phần tử của tập A hay a, b là các phần tử của tập A.
Mà A ⊂ {a; b; c; d} nên tập A là tập con của tập {a; b; c; d}, do đó các phần tử của tập A đều là các phần tử của tập {a; b; c; d}, mà tập {a; b; c; d} gồm các phần tử là a, b, c, d, trong đó có a, b là các phần tử của tập A, do đó c, d có thể là các phần tử của tập A.
Vậy ta có các tập hợp A thỏa mãn điều kiện của bài toán là:
{a; b}, {a; b; c}, {a; b; d}, {a; b; c; d}.
Bài 7 trang 13 SBT Toán 10 - Chân trời sáng tạo
Cho các tập hợp \(A = \left\{ {1;2;3;4;5} \right\}\) và \(B = \left\{ {1;3;5;7;9} \right\}\). Hãy tìm tập hợp M có nhiều phần tử nhất thỏa mãn \(M \subset A\) và \(M \subset B\)
Phương pháp:
Bước 1: Xác định tập hợp M chứa nhiều phần tử nhất thỏa mãn từng trường hợp \(M \subset A\), \(M \subset B\)
Bước 2: Từ Bước 1, xác định các phần tử vừa thuộc tập hợp A vừa thuộc tập hợp B
Lời giải:
Do M ⊂ A nên các phần tử của tập hợp M đều là các phần tử của tập A.
Do M ⊂ B nên các phần tử của tập hợp M đều là các phần tử của tập B.
Các phần tử vừa thuộc tập A vừa thuộc tập B là 1; 3; 5.
Do đó tập hợp M có nhiều phần tử nhất thỏa mãn M ⊂ A và M ⊂ B là tập hợp các phần tử vừa thuộc A vừa thuộc B.
Vậy M = {1; 3; 5}.
Bài 8 trang 13 SBT Toán 10 - Chân trời sáng tạo
Viết các tập hợp sau đây dưới dạng liệt kê các phần tử
a) \(A = \left\{ {y \in \mathbb{N}\left| {y = 10 - {x^2},x \in \mathbb{N}} \right.} \right\}\)
b) \(B = \left\{ {x \in \mathbb{N}\left| {\frac{6}{{6 - x}} \in \mathbb{N}} \right.} \right\}\)
c) \(C = \{ x \in \mathbb{N}| 2x - 3 \ge 0 \) và \(7 - x \ge 2 \}\)
d) \(D = \left\{ {\left( {x;y} \right)\left| {x \in \mathbb{N},y \in \mathbb{N},x + 2y = 8} \right.} \right\}\)
Lời giải:
a) Do x, y đều là các số tự nhiên nên ta lần lượt thay các giá trị x bởi các số tự nhiên 0; 1; 2; ... vào y = 10 – x2 để tìm các số y thỏa mãn là số tự nhiên.
Với x = 0 thì y = 10 – 02 = 10;
Với x = 1 thì y = 10 – 12 = 9;
Với x = 2 thì y = 10 – 22 = 6;
Với x = 3 thì y = 10 – 32 = 1;
Với x = 4 thì y = 10 – 42 = – 6 ∉ ℕ, ta dừng lại.
Do đó các số tự nhiên y thỏa mãn tập A là 1; 6; 9; 10.
Vậy A = {1; 6; 9; 10}.
Mà các ước tự nhiên của 6 là: 1, 2, 3, 6.
Với 6 – x = 1, suy ra x = 5 ∈ ℕ nên x = 5 thỏa mãn.
Với 6 – x = 2, suy ra x = 4 ∈ ℕ nên x = 4 thỏa mãn.
Với 6 – x = 3, suy ra x = 3 ∈ ℕ nên x = 3 thỏa mãn.
Với 6 – x = 6, suy ra x = 0 ∈ ℕ nên x = 0 thỏa mãn.
Vậy B = {0; 3; 4; 5}.
d) Ta có: x + 2y = 8 ⇔ x = 8 – 2y.
Do x ∈ ℕ, y ∈ ℕ nên ta có các trường hợp sau:
+ Với y = 0 thì x = 8 – 2 . 0 = 8
+ Với y = 1 thì x = 8 – 2 . 1 = 6
+ Với y = 2 thì x = 8 – 2 . 2 = 4
+ Với y = 3 thì x = 8 – 2 . 3 = 2
+ Với y = 4 thì x = 8 – 2 . 4 = 0
+ Với y = 5 thì x = 8 – 2 . 5 = – 2 ∉ ℕ, ta dừng lại.
Do đó ta có các cặp số (x; y) thỏa mãn là: (0; 4); (2; 3); (4; 2); (6; 1); (8; 0).
Vậy D = {(0; 4); (2; 3); (4; 2); (6; 1); (8; 0)}.
Bài 9 trang 13 SBT Toán 10 - Chân trời sáng tạo
Cho hai tập hợp \(A = \left\{ {2k + 1\left| {k \in \mathbb{Z}} \right.} \right\}\) và \(B = \left\{ {6l + 3\left| {l \in \mathbb{Z}} \right.} \right\}\). Chứng minh rằng \(B \subset A\)
Phương pháp:
Chứng minh mọi phần tử thuộc B đều thuộc A
Lời giải:
Để chứng minh B ⊂ A, ta chứng minh mọi phần tử của B đều là phần tử của A.
Lấy phần tử x tùy ý của B, ta có: x = 6l + 3, l ∈ ℤ.
Ta viết: x = 2 . 3l + 2 + 1 = 2(3l + 1) + 1 = 2k + 1 với k = 3l + 1 ∈ ℤ.
Suy ra x ∈ A.
Vậy, với mọi x ∈ B ta đều có x ∈ A. Do đó, B ⊂ A.
Bài 10 trang 13 SBT Toán 10 - Chân trời sáng tạo
Cho hai tập hợp \(A = \left\{ {1;2;a} \right\}\) và \(B = \left\{ {1;{a^2}} \right\}\). Tìm tất cả các giá trị của a sao cho \(B \subset A\)
Lời giải:
Ta có B ⊂ A khi mọi phần tử của tập B đều là phần tử của tập A.
Tập A có ba phần tử là 1; 2; a.
Tập B có hai phần tử là 1; a2.
Do 1 ∈ A nên để B ⊂ A thì a2 ∈ A hay a2 = 1 hoặc a2 = 2 hoặc a2 = a.
Với a2 = 1 thì a = 1 hoặc a = – 1.
Với a2 = a ⇔ a2 – a = 0 ⇔ a(a – 1) = 0 ⇔ a = 0 hoặc a = 1.
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục