Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải SGK Toán 11 trang 56 Chân trời sáng tạo tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài 1, 2, 3, 4, 5, 6, 7, 8 trang 56 SGK Toán lớp 11 Chân trời sáng tạo tập 1. Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.

Bài 1 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo

Chứng minh dãy số hữu hạn sau là cấp số cộng: \(1; - 3; - 7; - 11; - 15\).

Phương pháp:

Chứng minh các số hạng liên tiếp nhau hơn kém nhau cùng một số không đổi.

Lời giải:

Ta có:

\( - 3 = 1 + \left( { - 4} \right); - 7 = \left( { - 3} \right) + \left( { - 4} \right); - 11 = \left( { - 7} \right) + \left( { - 4} \right); - 15 = \left( { - 11} \right) + \left( { - 4} \right)\)

Vậy dãy số trên là cấp số cộng với công sai \(d =  - 4\).

Bài 2 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho \(\left( {{u_n}} \right)\) là cấp số cộng với số hạng đầu \({u_1} = 4\) và công sai \(d =  - 10\). Viết công thức số hạng tổng quát \({u_n}\).

Phương pháp:

Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

Lời giải:

Ta có: \({u_n} = {u_1} + \left( {n - 1} \right)d = 4 + \left( {n - 1} \right).\left( { - 10} \right) = 4 - 10n + 10 = 14 - 10n\)

Bài 3 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} =  - 3\) và công sai \(d = 2\).

a) Tìm \({u_{12}}\).                  

b) Số 195 là số hạng thứ bao nhiêu của cấp số cộng đó?

Phương pháp:

Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

Lời giải:

Số hạng tổng quát của cấp số cộng (un) với số hạng đầu u1 = – 3 và công sai d = 2 là:

un = – 3 + (n – 1).2 = 2n – 5.

a) Ta có u12 = 2.12 – 5 = 19.

b) Xét un = 195

⇔ 2n – 5 = 195

⇔ n = 100

Vậy số 195 là số hạng thứ 100 của cấp số cộng.

Bài 4 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo

Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.

a) \({u_n} = 3 - 4n\);      

b) \({u_n} = \frac{n}{2} - 4\);                             

c) \({u_n} = {5^n}\); d) \({u_n} = \frac{{9 - 5n}}{3}\).

Phương pháp:

Bước 1: Tính \({u_{n + 1}}\).

Bước 2: Xét hiệu \({u_{n + 1}} - {u_n}\).

Bước 3: Kết luận:

‒ Nếu \({u_{n + 1}} - {u_n} = d\) không đổi thì dãy số là cấp số cộng có công sai \(d\).

‒ Nếu \({u_{n + 1}} - {u_n}\) thay đổi với \(n \in {\mathbb{N}^*}\) thì dãy số không là cấp số cộng.

Lời giải:

a) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 =  - 1 - 4n\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) =  - 1 - 4n - 3 + 4n =  - 4\)

Vậy dãy số là cấp số cộng có công sai \(d =  - 4\).

b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)

Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).

c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)

Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.

d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} =  - \frac{5}{3}\)

Vậy dãy số là cấp số cộng có công sai \(d =  - \frac{5}{3}\).

Bài 5 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo

Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.

a) \({u_n} = 3 - 4n\);      

b) \({u_n} = \frac{n}{2} - 4\);                             

c) \({u_n} = {5^n}\); d) \({u_n} = \frac{{9 - 5n}}{3}\).

Phương pháp:

Bước 1: Tính \({u_{n + 1}}\).

Bước 2: Xét hiệu \({u_{n + 1}} - {u_n}\).

Bước 3: Kết luận:

‒ Nếu \({u_{n + 1}} - {u_n} = d\) không đổi thì dãy số là cấp số cộng có công sai \(d\).

‒ Nếu \({u_{n + 1}} - {u_n}\) thay đổi với \(n \in {\mathbb{N}^*}\) thì dãy số không là cấp số cộng.

Lời giải:

a) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 =  - 1 - 4n\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) =  - 1 - 4n - 3 + 4n =  - 4\)

Vậy dãy số là cấp số cộng có công sai \(d =  - 4\).

b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)

Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).

c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)

Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.

d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} =  - \frac{5}{3}\)

Vậy dãy số là cấp số cộng có công sai \(d =  - \frac{5}{3}\).

Bài 6 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo

Một người muốn mua một thanh gỗ đủ để cắt ra làm các thanh ngang của một cái thang. Biết rằng chiều dài các thanh ngang của cái thang đó (từ bậc dưới cùng) lần lượt là 45 cm, 43 cm, 41 cm,…, 31 cm.  

a) Cái thang đó có bao nhiêu bậc?

b) Tính chiều dài thanh gỗ mà người đó cần mua, giả sử chiều dài các mối nối (phần gỗ bị cắt thành mùn cưa) là không đáng kể.

Phương pháp:

‒ Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

‒ Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) là: \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải:

a) Dãy số 45; 43; 41; ...; 31 là một cấp số cộng có số hạng đầu u1 = 45 và công sai d = 2. Khi đó số hạng tổng quát của cấp số cộng trên là:

un = 45 + (n – 1)(– 2) = 47 – 2n, ∀n ∈ ℕ*.

Thanh cuối cùng có độ dài là 31 cm nên để tìm thang có bao nhiêu bậc tương ứng với tìm thanh ngang cuối cùng là số hạng thứ bao nhiêu trong cấp số cộng trên.

Ta có u= 47 – 2n = 31

⇔ n = 8

Vậy cái thang có 8 bậc.

Bài 7 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo

Khi một vận động viên nhảy dù nhảy ra khỏi máy bay, gia sử quãng đường người ấy rơi tự do (tính theo feet) trong mỗi giây liên tiếp theo thứ tự trước khi bung dù lần lượt là: 16; 48; 80; 112; 144; ... (các quãng đường này tạo thành cấp số cộng).

a) Tính công sai của cấp số cộng trên.

b) Tính tổng chiều dài quãng đường rơi tự do của người đó trong 10 giây đầu tiên.

Phương pháp:

‒ Chứng minh các số hạng liên tiếp nhau hơn kém nhau cùng một số không đổi.

‒ Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) là: \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải:

a) Ta có:

\(48 = 16 + 32;80 = 48 + 32;112 = 80 + 32;144 = 112 + 32;...\)

Vậy dãy số trên là cấp số cộng có số hạng đầu \({u_1} = 16\) và công sai \(d = 32\).

b) Tổng chiều dài quãng đường rơi tự do của người đó trong 10 giây đầu tiên là:

\({S_{10}} = \frac{{10\left[ {2{u_1} + \left( {10 - 1} \right)d} \right]}}{2} = \frac{{10\left( {2{u_1} + 9d} \right)}}{2} = \frac{{10\left( {2.16 + 9.32} \right)}}{2} = 1600\) (feet)

Bài 8 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo

Ở một loài thực vật lưỡng bội, tình trạng chiều cao cây do hai gene không alen là A và B cùng định theo kiểu tương tác cộng gộp. Trong kiểu gene nếu cứ thêm một alen trội A hay B thì chiều cao cây tăng thêm 5 cm. Khi trưởng thành, cây thấp nhất của loài này với kiểu gene aabb có chiều cao 100 cm. Hỏi cây cao nhất với kiểu gene AABB có chiều cao bao nhiêu?

Phương pháp:

‒ Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

Lời giải:

Chiều cao của các cây lập thành một cấp số cộng un

Cây thấp nhất có kiểu gene aabb nên u1 = 100.

Nếu cứ thêm một alen trội A hay B thì chiều cao cây tăng thêm 5 cm do đó công sai của cấp số cộng là d = 5.

Vậy cây cao nhất với kiểu gene AABB có chiều cao là 100 + 5.4 = 120 (cm).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan