Xem thêm: CHƯƠNG VI: ÔN TẬP
Bài 1 trang 167 SGK Toán 4 tập 2
Câu hỏi:
Tính:
a) \(\dfrac{2}{7}+ \dfrac{4}{7}\) ; \(\dfrac{6}{7}- \dfrac{2}{7}\) ; \(\dfrac{6}{7}-\dfrac{4}{7}\) ; \(\dfrac{4}{7}+\dfrac{2}{7}\) ;
b) \(\dfrac{1}{3}+ \dfrac{5}{12}\) ; \(\dfrac{9}{12} - \dfrac{1}{3}\) ; \(\dfrac{9}{12} - \dfrac{5}{12}\) ; \(\dfrac{5}{12} + \dfrac{1}{3}\).
Phương pháp:
- Muốn cộng (hoặc trừ) hai phân số cùng mẫu số ta cộng (hoặc trừ) hai tử số với nhau và giữ nguyên mẫu số.
- Muốn cộng (hoặc trừ) hai phân số khác mẫu số ta quy đồng mẫu số hai phân số rồi cộng (hoặc trừ) hai phân số đã quy đồng mẫu số.
Lời giải:
Bài 2 trang 167 SGK Toán 4 tập 2
Câu hỏi:
Tính:
Lời giải:
a) \(\dfrac{2}{7} + \dfrac{3}{5}=\dfrac{10}{35} + \dfrac{21}{35}=\dfrac{31}{35}\)
\(\dfrac{31}{35} - \dfrac{2}{7}=\dfrac{31}{35} - \dfrac{10}{35}=\dfrac{21}{35}=\dfrac{3}{5}\)
\(\dfrac{31}{35} - \dfrac{3}{5}=\dfrac{31}{35} - \dfrac{21}{35}=\dfrac{10}{35}=\dfrac{2}{7}\)
\(\dfrac{3}{5} + \dfrac{2}{7}=\dfrac{21}{35} + \dfrac{10}{35}=\dfrac{31}{35}\)
b) \(\dfrac{3}{4}+ \dfrac{1}{6}=\dfrac{9}{12}+ \dfrac{2}{12}=\dfrac{11}{12}\)
\(\dfrac{11}{12} - \dfrac{3}{4}=\dfrac{11}{12} - \dfrac{9}{12}=\dfrac{2}{12}=\dfrac{1}{6}\)
\(\dfrac{11}{12}- \dfrac{1}{6}=\dfrac{11}{12}- \dfrac{2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
\(\dfrac{1}{6}+ \dfrac{3}{4}=\dfrac{2}{12}+ \dfrac{9}{12}=\dfrac{11}{12}\)
Bài 3 trang 167 SGK Toán 4 tập 2
Câu hỏi:
Tìm \(x\) :
a) \( \dfrac{2}{9} + x =1; \) b) \(\dfrac{6}{7} - x = \dfrac{2}{3}\) ; c) \(x - \dfrac{1}{2}= \dfrac{1}{4}\).
Phương pháp:
Áp dụng các quy tắc:
- Muốn tìm số hạng chưa biết ta lấy tổng trừ đi số hạng đã biết.
- Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu.
- Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ.
Lời giải:
Bài 4 trang 168 SGK Toán 4 tập 2
Câu hỏi:
Diện tích của vườn hoa nhà trường được sử dụng như sau:
3/4 diện tích vườn hoa dùng để trồng các loại hoa, 1/5 diện tích vườn hoa để làm đường đi, diện tích phần còn lại của vườn hoa để xây bể nước (như hình vẽ):
a) Hỏi diện tích để xây bể nước chiếm bao nhiêu phần diện tích vườn hoa ?
b) Biết vườn hoa là hình chữ nhật có chiều dài 20m, chiều rộng 15m. Hỏi diện tích để xây bể nước là bao nhiêu mét vuông ?
Lời giải:
Tóm tắt
Vườn hoa hình chữ nhật
Chiều dài: 20m
Chiều rộng: 15m
Trồng hoa: \(\dfrac{3}{4}\) diện tích
Đường đi: \(\dfrac{1}{5}\) diện tích vườn
a) Diện tích xây bể nước: ....diện tích vườn
b) Diện tích xây bể nước: ... ?
Bài giải
a) Coi diện tích vườn hoa là \(1\) đơn vị.
Diện tích để trồng hoa và làm đường đi chiếm số phần diện tích vườn hoa là:
\(\dfrac{3}{4} + \dfrac{1}{5}\) = \(\dfrac{19}{20}\) (diện tích vườn hoa)
Diện tích để xây bể nước chiếm số phần diện tích vườn hoa là:
\(1 - \dfrac{19}{20}\) = \(\dfrac{1}{20}\) (diện tích vườn hoa)
b) Diện tích vườn hoa là:
\(20 \times 15 = 300\;(m^2) \)
Diện tích để xây bể nước là:
\( 300 \times \dfrac{1}{20} = 15 \;(m^2)\)
Đáp số: a) \(\dfrac{1}{20}\) diện tích vườn hoa;
b) \(15m^2\).
Bài 5 trang 168 SGK Toán 4 tập 2
Câu hỏi:
Con sên thứ nhất trong 15 phút bò được 2/5 m, con sên thứ hai trong 1/4 giờ bò được 45cm. Hỏi con sên nào bò nhanh hơn?
Lời giải:
Ta có: \(1m = 100cm\); \(1\) giờ \(= 60\) phút.
Do đó, \(\dfrac{2}{5}m = \dfrac{2}{5}\times 100cm = 40cm\)
\(\dfrac{1}{4}\) giờ \(=\dfrac{1}{4}\times 60 \) phút \(= 15\) phút
Trong 15 phút con sên thứ nhất bò được 40cm.
Trong 15 phút con sên thứ hai bò được 45cm.
Mà 40cm < 45cm.
Vậy con sên thứ hai bò nhanh hơn con sên thứ nhất.
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục