Bài 2.7 trang 36 SGK Toán 8 tập 1 - Kết nối tri thức
Khai triển:
a) \({\left( {{x^2} + 2y} \right)^3}\);
b) \({\left( {\dfrac{1}{2}x - 1} \right)^3}\).
Lời giải:
a)
\(\begin{array}{l}{\left( {{x^2} + 2y} \right)^3} = {\left( {{x^2}} \right)^3} + 3.{\left( {{x^2}} \right)^2}.2y + 3.{x^2}.{\left( {2y} \right)^2} + {\left( {2y} \right)^3}\\ = {x^6} + 6{x^4}y + 12{x^2}{y^2} + 8{y^3}\end{array}\)
b)
\({\left( {\dfrac{1}{2}x - 1} \right)^3} = {\left( {\dfrac{1}{2}x} \right)^3} - 3.{\left( {\dfrac{1}{2}x} \right)^2}.1 + 3.\dfrac{1}{2}x{.1^2} - {1^3} = \dfrac{1}{8}{x^3} - \dfrac{3}{4}{x^2} + \dfrac{3}{2}x - 1\)
Bài 2.8 trang 36 SGK Toán 8 tập 1 - Kết nối tri thức
Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.
a) \(27 + 54x + 36{x^2} + 8{x^3}\).
b) \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3}\).
Lời giải:
a) \(27 + 54x + 36{x^2} + 8{x^3} = {3^3} + {3.3^2}.2x + 3.3.{\left( {2x} \right)^2} + {\left( {2x} \right)^3} = {\left( {3 + 2x} \right)^3}\)
b) \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3} = {\left( {4x} \right)^3} - 3.{\left( {4x} \right)^2}.3y + 3.4x.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} = {\left( {4x - 3y} \right)^3}\)
Bài 2.9 trang 36 SGK Toán 8 tập 1 - Kết nối tri thức
Tính nhanh giá trị của biểu thức:
a) \({x^3} + 9{x^2} + 27x + 27\) tại x=7.
b) \(27 - 54x + 36{x^2} - 8{x^3}\) tại x=6,5.
Lời giải:
a) \({x^3} + 9{x^2} + 27x + 27 = {x^3} + 3.{x^2}.3 + 3.x{.3^2} + {3^3} = {\left( {x + 3} \right)^3}\)
Thay x=7 vào biểu thức ta được: \({\left( {7 + 3} \right)^3} = {10^3} = 1000\).
b) \(27 - 54x + 36{x^2} - 8{x^3} = {3^3} - {3.3^2}.2x + 3.3.{\left( {2x} \right)^2} - {\left( {2x} \right)^3} = {\left( {3 - 2x} \right)^3}\)
Thay x=6,5 vào biểu thức ta được: \({\left( {3 - 2.6,5} \right)^3} = {\left( { - 10} \right)^3} = - 1000\).
Bài 2.10 trang 36 SGK Toán 8 tập 1 - Kết nối tri thức
Rút gọn các biểu thức sau:
a) \({\left( {x - 2y} \right)^3} + {\left( {x + 2y} \right)^3}\)
b) \({\left( {3x + 2y} \right)^3} + {\left( {3x - 2y} \right)^3}\)
Phương pháp:
Sử dụng các hằng đẳng thức đáng nhớ để khai triển
\({\left( {a+b} \right)^3} = {a}^3 + 3.{a}^2.b + 3.{a}.{{b}^2} + {{b}^3}\)
\({\left( {a-b} \right)^3} = {a}^3 - 3.{a}^2.b + 3.{a}.{{b}^2} - {{b}^3}\)
Lời giải:
a)
\(\begin{array}{l}{\left( {x - 2y} \right)^3} + {\left( {x + 2y} \right)^3}\\ = {x^3} - 3.{x^2}.2y + 3.x.{\left( {2y} \right)^2} - {\left( {2y} \right)^3} + {x^3} + 3.{x^2}.2y + 3.x.{\left( {2y} \right)^2} + {\left( {2y} \right)^3}\\ = 2{x^3} + 24x{y^2}\end{array}\)
b)
\(\begin{array}{l}{\left( {3x + 2y} \right)^3} + {\left( {3x - 2y} \right)^3}\\ = {\left( {3x} \right)^3} + 3.{\left( {3x} \right)^2}.2y + 3.3x{\left( {2y} \right)^2} + {\left( {2y} \right)^3} + {\left( {3x} \right)^3} - 3.{\left( {3x} \right)^2}.2y + 3.3x{\left( {2y} \right)^2} - {\left( {2y} \right)^3}\\ = 54{x^3} + 72x{y^2}\end{array}\)
Bài 2.11 trang 36 SGK Toán 8 tập 1 - Kết nối tri thức
Chứng minh \({\left( {a - b} \right)^3} = - {\left( {b - a} \right)^3}\)
Lời giải:
\(\begin{array}{l}{\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\\ - {\left( {b - a} \right)^3} = - \left( {{b^3} - 3{b^2}a + 3b{a^2} - {a^3}} \right) = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\end{array}\)
Vậy \({\left( {a - b} \right)^3} = - {\left( {b - a} \right)^3}\) (đpcm).
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục