Cho dãy số \(\left( {{b_n}} \right)\) có số hạng tổng quát là \({b_n} = \sin \alpha + {\sin ^2}\alpha + ... + {\sin ^n}\alpha \) với \(\alpha \ne {\pi \over 2} + k\pi \). Tìm giới hạn của \(\left( {{b_n}} \right)\)
Giải:
Dãy số: \(\sin \alpha ,...,{\sin ^n}\alpha ,...\) với \(\alpha \ne {\pi \over 2} + k\pi \), là một cấp số nhân vô hạn, công bội \(q = \sin \alpha \)
Vì \(\left| {\sin \alpha } \right| < 1\) với \(\alpha \ne {\pi \over 2} + k\pi \) nên \(\left( {{{\sin }^n}\alpha } \right)\) là một cấp số nhân lùi vô hạn.
Hơn nữa, \({b_n} = \sin \alpha + {\sin ^2}\alpha + ... + {\sin ^n}\alpha = {S_n}\)
Do đó, \(\lim {b_n} = \sin \alpha + {\sin ^2}\alpha + ... + {\sin ^n}\alpha + ... = {{\sin \alpha } \over {1 - \sin \alpha }}\)
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục