Cho hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cùng xác định trên khoảng \(\left( { - \infty ,a} \right)\). Dùng định nghĩa chứng minh rằng, nếu \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = M\) thì \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right).g\left( x \right) = L.M\)
Giải :
Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thoả mãn \({x_n} < a\) và \({x_n} \to - \infty \)
Vì \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L\) nên \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right) = L\)
Vì \(\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = M\) nên \(\mathop {\lim }\limits_{n \to + \infty } g\left( {{x_n}} \right) = M\)
Do đó, \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right).g\left( {{x_n}} \right) = L.M\)
Từ định nghĩa suy ra \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right).g\left( x \right) = L.M\)
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục