Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.4 trang 163 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Cho hai hàm số

Cho hai hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) cùng xác định trên khoảng \(\left( { - \infty ,a} \right)\). Dùng định nghĩa chứng minh rằng, nếu \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to  - \infty } g\left( x \right) = M\) thì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right).g\left( x \right) = L.M\)

Giải :

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thoả mãn \({x_n} < a\) và \({x_n} \to  - \infty \)

Vì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = L\) nên \(\mathop {\lim }\limits_{n \to  + \infty } f\left( {{x_n}} \right) = L\)

Vì \(\mathop {\lim }\limits_{x \to  - \infty } g\left( x \right) = M\) nên \(\mathop {\lim }\limits_{n \to  + \infty } g\left( {{x_n}} \right) = M\)

Do đó, \(\mathop {\lim }\limits_{n \to  + \infty } f\left( {{x_n}} \right).g\left( {{x_n}} \right) = L.M\)

Từ định nghĩa suy ra \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right).g\left( x \right) = L.M\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan