Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.2 trang 12 Sách bài tập (SBT) Hình học 11

Bình chọn:
3.3 trên 4 phiếu

Viết phương trình của đường thẳng d’ là ảnh của d

Trong mặt phẳng \(\overrightarrow v  = \left( { - 2;1} \right)\) cho, đường thẳng d có phương trình \(2x - 3y + 3 = 0\) , đường thẳng d1 có phương trình \(2x - 3y - 5 = 0\).

a)  Viết phương trình của đường thẳng d’ là ảnh của d qua \({T_{\overrightarrow v }}\).

b)  Tìm tọa độ của \(\overrightarrow w \) có giá vuông góc với đường thẳng d để d1 là ảnh của d qua \({T_{\overrightarrow w }}\).

Giải:

a)  Lấy một điểm thuộc d ,chẳng hạn \(M = \left( {0;1} \right)\).

Khi đó \(M' = {T_{\overrightarrow v }}\left( M \right) = \left( {0 - 2;1 + 1} \right) = \left( { - 2;2} \right)\) thuộc d'. Vì d' song song với d nên phương trình của nó có dạng \(2x - 3y + C = 0\). Do \(M' \in d'\) nên \(2.\left( { - 2} \right) - 3.2 + C = 0\) . Từ đó suy ra C = 10 . Do đó d' có phương trình \(2x - 3y + 10 = 0\) .

b)  Lấy một điểm thuộc d ,chẳng hạn \(M = \left( {0;1} \right)\). Đường thẳng \({d_2}\) qua M vuông góc với  có vectơ chỉ phương là \(\overrightarrow v  = \left( {2; - 3} \right)\). Do đó phương trình của \({d_2}\) là \({{x - 0} \over 2} = {{y - 1} \over { - 3}}\). Gọi M' là giao của \({d_1}\) với \({d_2}\) thì tọa độ của nó phải thỏa mãn hệ phương trình:

\(\left\{ \matrix{
2x - 3y - 5 = 0 \hfill \cr
3x + 2y - 2 = 0 \hfill \cr} \right. \Rightarrow \left\{ \matrix{
x = {{16} \over {13}} \hfill \cr
y = - {{11} \over {13}} \hfill \cr} \right.\)

Từ đó suy ra \(\overrightarrow w  = \overrightarrow {MM'}  = \left( {{{16} \over {13}}; - {{24} \over {13}}} \right)\).

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan