Xác định một hàm số \(y = f\left( x \right)\) thoả mãn đồng thời các điều kiện sau :
a) \(f\left( x \right)\) xác định trên R
b) \(y = f\left( x \right)\) liên tục trên \(\left( { - \infty ;0} \right)\) và trên \({\rm{[}}0; + \infty )\) nhưng gián đoạn tại x = 0
Giải :
Hướng dẫn :Chẳng hạn xét
\(f\left( x \right) = \left\{ \matrix{
{x^2}{\rm{ ,\,\, nếu }}\,\,x \ge 0 \hfill \cr
x - 1{\rm{ , \,\,nếu }}\,\,x < 0 \hfill \cr} \right.\)
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục