Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.22 trang 30 Sách bài tập (SBT) Hình học 11

Bình chọn:
3 trên 3 phiếu

Cho hình vuông ABCD có tâm I. Trên tia BC lấy điểm E sao cho BE = AI.

Cho hình vuông ABCD có tâm I. Trên tia BC lấy điểm E sao cho BE = AI.

a)  Xác định một phép dời hình biến A thành B và I thành E

b)  Dựng ảnh của hình vuông ABCD qua phép dời hình ấy.

Giải:

Gọi F là phép đối xứng qua đường trung trực d của cạnh AB, G là phép đối xứng qua đường trung trực d' của cạnh IE. Khi đó F biến AI thành BI, G biến BI thành BE. Từ đó suy ra phép dời hình có được bằng cách thực hiện liên tiếp hai phép biến hình F và G sẽ biến AI thành BE.

Hơn nữa gọi J là giao của d và d', thì dễ thấy \(J{\rm{A}} = JB,JI = J{\rm{E}}\) và \(2\left( {JI,JB} \right) = \left( {JI,J{\rm{E}}} \right) = {45^0}\)

(vì \(JE\parallel IB\)). Do đó theo kết quả của bài 1.21, phép dời hình nói trên chính là phép quay tâm J góc 45°

Lưu ý. Có thể tìm được nhiều phép dời hình biến AI thành BE.

b) F biến các điểm A, B, C, D thành B, A, D, C; G biến các điểm B, A, D, C thành B, A', D', C'. Do đó ảnh của hình vuông ABCD qua phép dời hình nói trên là hình vuông BA'D'C' đối xứng với hình vuông BADC qua d'

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH

Bài viết liên quan