Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(x = 2\sqrt 2 \). Hãy viết phương trình đường thẳng d’ là ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số \(k = {1 \over 2}\) và phép quay tâm O góc 45°
Giải:
Gọi \(d_1\) là ảnh của d qua phép vị tự tâm O tỉ số \(k = {1 \over 2}\) thì phương trình của \(d_1\) là \(x = \sqrt 2 \). Giả sử d' là ảnh của d qua phép quay tâm O góc 45°. Lấy \(M\left( {\sqrt 2 ;0} \right)\) thuộc \(d_1\) thì ảnh của nó qua phép quay tâm O góc 45° là \(M'\left( {1;1} \right)\) thuộc d'. Vì \(OM \bot {d_1}\) nên \(OM' \bot d'\). Vậy d' là đường thẳng đi qua M' và vuông góc với OM'. Do đó nó có phương trình \(x + y - 2 = 0\).
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục