Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.33 trang 39 Sách bài tập (SBT) Hình học 11

Bình chọn:
4 trên 2 phiếu

Cho tam giác ABC. Tìm một điểm M trên cạnh AB và một điểm N trên cạnh AC sao cho MN song song với BC và AM = CN.

Cho tam giác ABC. Tìm một điểm M trên cạnh AB và một điểm N trên cạnh AC sao cho MN song song với BC và AM = CN.

Giải:

Giả sử đã dựng được hai điểm M, N thỏa mãn điều kiện đầu bài. Đường thẳng qua M và song song với AC cắt BC tại D. Khi đó tứ giác MNCD là hình bình hành. Do đó CN = DM. Từ đó suy ra tam giác AMD cân tại M. Do đó \(\widehat {MA{\rm{D}}} = \widehat {M{\rm{D}}A} = \widehat {DAC}\). Suy ra AD là phân giác trong của góc A. Do đó AD dựng được .Ta lại có \(\overrightarrow {NM}  = \overrightarrow {C{\rm{D}}} \), nên có thể xem M là ảnh của N qua phép tịnh tiến theo vectơ \(\overrightarrow {DC} \).

Từ đó suy ra cách dựng:

-  Dựng đường phân giác trong của góc A. Đường này cắt BC tại D.

- Dựng đường thẳng d là ảnh của đường thẳng AC qua phép tịnh tiến theo vectơ \(\overrightarrow {C{\rm{D}}} \). d cắt AB tại M.

-  Dựng N sao cho \(\overrightarrow {NM}  = \overrightarrow {C{\rm{D}}} \).

Khi đó dễ thấy M, N thỏa mãn điều kiện đầu bài.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan