Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.10 trang 67 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Một đoàn đại biểu gồm 4 học sinh được chọn từ một tổ gồm 5 nam và 4 nữ. Hỏi có bao nhiêu cách chọn sao cho trong đó có ít nhất một nam và ít nhất một nữ ?

Một đoàn đại biểu gồm 4 học sinh được chọn từ một tổ gồm 5 nam và 4 nữ. Hỏi có bao nhiêu cách chọn sao cho trong đó có ít nhất một nam và ít nhất một nữ ?

Giải:

Kí hiệu X là tập hợp các đoàn đại biểu.A, B lần lượt là tập các đoàn đại biểu gồm toàn nam và toàn nữ.

Theo bài ra ta cần tìm:

\(n\left[ {X\backslash \left( {A \cup B} \right)} \right] = n\left( X \right) - n\left( {A \cup B} \right)\)

\(= n\left( X \right) - n\left( A \right) - n\left( B \right)\)                     

Ta có

\(n\left( X \right) = C_9^4,{\rm{ }}n\left( A \right) = C_5^4,{\rm{ }}n\left( B \right) = C_4^4\)

Vậy \(n\left[ {X\backslash \left( {A \cup B} \right)} \right] = C_9^4 - C_5^4 - C_4^4 = 120\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan