Chứng minh rằng với \(1 \le k \le n,\)
\(C_{n + 1}^{k + 1} = C_n^k + C_{n - 1}^k + ... + C_{k + 1}^k + C_k^k\)
Giải:
\(\eqalign{
& C_{n + 1}^{k + 1} = C_n^k + C_n^{k + 1} \cr
& C_n^{k + 1} = C_{n - 1}^k + C_{n - 1}^{k + 1} \cr
& ... \cr
& C_{k + 2}^{k + 1} = C_{k + 1}^k + C_{k + 1}^{k + 1} \cr} \)
Từ đó
\(\eqalign{
& C_{n + 1}^{k + 1} = C_n^k + C_{n - 1}^k + ... + C_{k + 1}^k + C_{k + 1}^{k + 1} \cr
& C_{n + 1}^{k + 1} = C_n^k + C_{n - 1}^k + ... + C_{k + 1}^k + C_k^k. \cr} \)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục