Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.16 trang 74 Sách bài tập (SBT) Hình học 11

Bình chọn:
4.2 trên 5 phiếu

Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD. Chứng minh rằng G1G2 song song với các mặt phẳng (ABC) và (ABD).

Cho tứ diện ABCD. Gọi G1 và G2  lần lượt là trọng tâm của tam giác ACD và BCD. Chứng minh rằng G1G2 song song với các mặt phẳng (ABC) và (ABD).

Giải:

(h.2.34)

Gọi I là trung điểm của CD.

Vì G1 là trọng tâm của tam giác ACD nên \({G_1} \in AI\)

Vì G2 là trọng tâm của tam giác BCD nên \({G_2} \in BI\)

Ta có :

\(\left\{ \matrix{
{{I{G_1}} \over {IA}} = {1 \over 3} \hfill \cr
{{I{G_2}} \over {IB}} = {1 \over 3} \hfill \cr} \right. \Rightarrow {{I{G_1}} \over {IA}} = {{I{G_2}} \over {IB}} \Rightarrow {G_1}{G_2}\parallel AB\)

\(AB \subset \left( {ABC} \right) \Rightarrow {G_1}{G_2}\parallel \left( {ABC} \right)\) 

Và \(AB \subset \left( {ABD} \right) \Rightarrow {G_1}{G_2}\parallel \left( {ABD} \right)\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan