Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.16 trang 74 Sách bài tập (SBT) Hình học 11

Bình chọn:
4.2 trên 5 phiếu

Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD. Chứng minh rằng G1G2 song song với các mặt phẳng (ABC) và (ABD).

Cho tứ diện ABCD. Gọi G1 và G2  lần lượt là trọng tâm của tam giác ACD và BCD. Chứng minh rằng G1G2 song song với các mặt phẳng (ABC) và (ABD).

Giải:

(h.2.34)

Gọi I là trung điểm của CD.

Vì G1 là trọng tâm của tam giác ACD nên \({G_1} \in AI\)

Vì G2 là trọng tâm của tam giác BCD nên \({G_2} \in BI\)

Ta có :

\(\left\{ \matrix{
{{I{G_1}} \over {IA}} = {1 \over 3} \hfill \cr
{{I{G_2}} \over {IB}} = {1 \over 3} \hfill \cr} \right. \Rightarrow {{I{G_1}} \over {IA}} = {{I{G_2}} \over {IB}} \Rightarrow {G_1}{G_2}\parallel AB\)

\(AB \subset \left( {ABC} \right) \Rightarrow {G_1}{G_2}\parallel \left( {ABC} \right)\) 

Và \(AB \subset \left( {ABD} \right) \Rightarrow {G_1}{G_2}\parallel \left( {ABD} \right)\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan