Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD. Chứng minh rằng G1G2 song song với các mặt phẳng (ABC) và (ABD).
Giải:
(h.2.34)
Gọi I là trung điểm của CD.
Vì G1 là trọng tâm của tam giác ACD nên \({G_1} \in AI\)
Vì G2 là trọng tâm của tam giác BCD nên \({G_2} \in BI\)
Ta có :
\(\left\{ \matrix{
{{I{G_1}} \over {IA}} = {1 \over 3} \hfill \cr
{{I{G_2}} \over {IB}} = {1 \over 3} \hfill \cr} \right. \Rightarrow {{I{G_1}} \over {IA}} = {{I{G_2}} \over {IB}} \Rightarrow {G_1}{G_2}\parallel AB\)
\(AB \subset \left( {ABC} \right) \Rightarrow {G_1}{G_2}\parallel \left( {ABC} \right)\)
Và \(AB \subset \left( {ABD} \right) \Rightarrow {G_1}{G_2}\parallel \left( {ABD} \right)\)
Sachbaitap.com
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục