Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Cz và Dt sao cho chúng cắt mặt phẳng (ABCD). Một mặt phẳng \(\left( \alpha \right)\) cắt bốn nửa đường thẳng theo thứ tự nói trên tại A’, B’, C’ và D’.
a) Chứng minh rằng \(\left( {Ax,By} \right)\parallel \left( {Cz,Dt} \right)\) và \(\left( {Ax,Dt} \right)\parallel \left( {By,Cz} \right)\)
b) Tứ giác A’B’C’D’ là hình gì?
c) Chứng minh \(AA' + CC' = BB' + DD'\).
Giải:
a) Ta có :
\(\left\{ \matrix{
Ax\parallel Dt \hfill \cr
Dt \subset \left( {Cz,Dt} \right) \hfill \cr} \right.\)
\( \Rightarrow Ax\parallel \left( {Cz,Dt} \right)\)
\(\left. \matrix{
AB\parallel CD \hfill \cr
CD \subset \left( {Cz,Dt} \right) \hfill \cr} \right\} \Rightarrow AB\parallel \left( {Cz,Dt} \right)\)
Từ \(Ax,AB \subset \left( {Ax,By} \right)\) suy ra \(\left( {Ax,By} \right)\parallel \left( {Cz,Dt} \right)\)
Tương tự ta có \(\left( {Ax,Dt} \right)\parallel \left( {By,Cz} \right)\)
b)
\(\left\{ \matrix{
\left( \alpha \right) \cap \left( {Ax,By} \right) = A'B` \hfill \cr
\left( \alpha \right) \cap \left( {Cz,Dt} \right) = C'D' \Rightarrow A'B'\parallel C'D'\,\,\,\left( 1 \right) \hfill \cr
\left( {Ax,By} \right)\parallel \left( {Cz,Dt} \right) \hfill \cr} \right.\)
\(\left\{ \matrix{
\left( \alpha \right) \cap \left( {Ax,Dt} \right) = A'D` \hfill \cr
\left( \alpha \right) \cap \left( {By,Cz} \right) = B'C' \Rightarrow A'D'\parallel B'C'\,\,\,\left( 2 \right) \hfill \cr
\left( {Ax,Dt} \right)\parallel \left( {By,Cz} \right) \hfill \cr} \right.\)
Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.
c) Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’B’C’D’. Dễ thấy OO’ là đường trung bình của hình thang AA’, suy ra \(OO' = {{AA' + CC'} \over 2}\)
Tương tự ta có:
\(OO' = {{BB' + DD'} \over 2} \Rightarrow AA' + CC' = BB' + DD'\).
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục