Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.3 trang 66 Sách bài tập (SBT) Hình học 11

Bình chọn:
4.5 trên 4 phiếu

Cho tứ diện ABCD. Trên cạnh AB lấy điểm I và lấy các điểm J, K lần lượt là điểm thuộc miền trong các tam giác BCD và ACD. Gọi L là giao điểm của JK với mặt phẳng (ABC)

Cho tứ diện ABCD. Trên cạnh AB lấy điểm I và lấy các điểm J, K lần lượt là điểm thuộc miền trong các tam giác BCD và ACD. Gọi L là giao điểm của JK với mặt phẳng (ABC)

a)  Hãy xác định điểm L.

b)  Tìm giao tuyến của mặt phẳng (IJK) với các mặt của tứ diện ABCD.

Giải:

(h.2.22)

a)  Gọi \(N = DK \cap AC;M = DJ \cap BC\).

Ta có \(\left( {DJK} \right) \cap \left( {ABC} \right) = MN \Rightarrow MN \subset \left( {ABC} \right)\).

Vì \(L = \left( {ABC} \right) \cap JK\) nên dễ thấy \(L = JK \cap MN\).

b) Ta có I là một điểm chung của (ABC) và (IJK).

Mặt khác vì \(L = MN \cap JK\) mà \(MN \subset \left( {ABC} \right)\) và \(JK \subset \left( {IJK} \right)\) nên L là điểm chung thứ hai của (ABC) và (IJK), suy ra \(\left( {IJK} \right) \cap \left( {ABC} \right) = IL\).

Gọi \(E = IL \cap AC;F = EK \cap C{\rm{D}}\). Lí luận tương tự ta có \(EF = \left( {IJK} \right) \cap \left( {ACD} \right)\).

Nối FJ cắt BD tại P; P là một giao điểm (IJK) và (BCD).

Ta có \(PF = \left( {IJK} \right) \cap \left( {BCD} \right)\)

Và \(IP = \left( {AB{\rm{D}}} \right) \cap \left( {IJK} \right)\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan