Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.44 trang 85 Sách bài tập (SBT) Hình học 11

Bình chọn:
4 trên 2 phiếu

Cho hình lập phương ABCD.A’B’C’D’ các trung điểm E, F của các cạnh AB, DD’. Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng (EFB), (EFC), (EFC’) và (EFK) với K là trung điểm của cạnh B’C’.

Cho hình lập phương ABCD.A’B’C’D’ các trung điểm E, F của các cạnh AB, DD’. Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng (EFB), (EFC), (EFC’) và (EFK) với K là trung điểm của cạnh B’C’.

Giải:

Ta xác định thiết diện của hình lập phương cắt bởi các mặt phẳng sau:

-  Mặt phẳng (EFB): ta vẽ \(FG\parallel AB\) và được thiết diện là hình chữ nhật ABGF, G là trung điểm của CC’.

-  (h.2.67) Mặt phẳng (EFC): Nối FC và vẽ \(EG\parallel FC\), ta được thiết diện là hình thang \(ECFG\left( {AG = {1 \over 4}AA'} \right)\).

-  (h.2.68) Mặt phẳng (EFC’): Nối FC’ và vẽ \(EG\parallel FC'\). Nối GC’ và vẽ \(FH\parallel GC'\). Ta được thiết diện là hình ngũ giác EGC’FH.

\(\left( {BG = {1 \over 4}BB',AH = {1 \over 3}A{\rm{D}}} \right)\) 

-  (h.2.69) Mặt phẳng (EFK) với K là trung điểm của đoạn B’C’. Lấy trung điểm E’ của đoạn A’B’. Ta có \(I = EF \cap E'D'\). Ta có IK là giao tuyến của hai mặt phẳng (EFK) và (A’B’C’D’). Gọi \(G = IK \cap C'D'\). Nối F với G, vẽ \(EH\parallel FG\). Nối K với H, vẽ \(FL\parallel KH\) và nối L với E. Ta được thiết diện là hình lục giác đều EHKGFL. (G, H, L theo thứ tự là trung điểm của D’C’, B’B, AD).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan