Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.50 trang 87 Sách bài tập (SBT) Hình học 11

Bình chọn:
4 trên 2 phiếu

Cho tứ diện ABCD. Tìm vị trí điểm M trong không gian sao cho:

Cho tứ diện ABCD. Tìm vị trí điểm M trong không gian sao cho:

\(M{A^2} + M{B^2} + M{C^2} + M{{\rm{D}}^2}\) đạt giá trị cực tiểu.

Giải:

Gọi E, F lần lượt là trung điểm của AB và CD. Ta có:

\(M{A^2} + M{B^2} = 2M{E^2} + {1 \over 2}A{B^2}\,\,\,\,\,\left( 1 \right)\) 

\(M{C^2} + M{D^2} = 2M{F^2} + {1 \over 2}C{{\rm{D}}^2}\,\,\,\,\,\left( 2 \right)\) 

Cộng (1) và (2) ta có:

\(M{A^2} + M{B^2} + M{C^2} + M{{\rm{D}}^2}\)

\( = 2\left( {M{E^2} + M{F^2}} \right) + {1 \over 2}\left( {A{B^2} + C{{\rm{D}}^2}\,\,} \right)\,\,\) 

Gọi J là trung điểm của EF, ta có:

\(\left( {M{E^2} + M{F^2}} \right) = 2M{J^2}\, + {1 \over 2}E{F^2}\) 

Khi đó:

\(\eqalign{
& M{A^2} + M{B^2} + M{C^2} + M{{\rm{D}}^2} \cr
& = 2\left( {2M{J^2}\, + {1 \over 2}E{F^2}} \right) + {1 \over 2}\left( {A{B^2} + C{{\rm{D}}^2}} \right) \cr
& \ge E{F^2} + {1 \over 2}\left( {A{B^2} + C{{\rm{D}}^2}} \right) \cr} \) 

Vậy \(M{A^2} + M{B^2} + M{C^2} + M{{\rm{D}}^2}\) đạt giá trị nhỏ nhất khi \(M \equiv J\).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan