Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 31 trang 121 Sách bài tập Hình học lớp 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

a)Viết phương trình mặt cầu đi qua

a) Viết phương trình mặt cầu đi qua A(1;2;-4), B(1;-3;1), C(2;2;3) và có tâm nằm trên mp(Oxy).

b) Viết phương trình mặt cầu đi qua hai điểm A(3;-1;2), B(1;1;-2) và có tâm thuộc trục Oz.

c) Viết phương trình mặt cầu đi qua bốn điểm A(1;1;1), B(1;2;1), C(1;1;2), D(2;2;1).

Giải

a) Gọi I là tâm mặt cầu. Vì \(I \in mp(Oxy)\) nên I=(x;y;0). Theo giả thiết, ta có \(A{I^2} = B{I^2} = C{I^2}\), suy ra

 \(\Rightarrow \left\{ \matrix{  x =  - 2 \hfill \cr  y = 1 \hfill \cr}  \right. \Rightarrow I( - 2;1;0). \)

Bán kính của mặt cầu là:

\(R = AI = \sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left( {1 - 2} \right)}^2} + {4^2}}  = \sqrt {26} \)

Vậy  phương trình mặt cầu là:

\({(x + 2)^2} + {(y - 1)^2} + {z^2} = 26.\)

b) Gọi I là tâm mặt cầu, \(I \in Oz\) nên I = (0;0;z).

Theo giả thiết \(A{I^2} = B{I^2}\), ta có phương trình

\({( - 3)^2} + {1^2} + {(z - 2)^2} = {( - 1)^2} + {( - 1)^2} + {(z + 2)^2}\)

\(\Rightarrow 8z = 8 \Rightarrow z = 1\)

Vậy \(I=(0;0;1)\) và \(AI = \sqrt {11} .\)

Phương trình mặt cầu cần tìm là

\({x^2} + {y^2} + {(z - 1)^2} = 11\)

c) Phương trình mặt cầu (S) cần tìm có dạng

Ta có : \(\eqalign{  & {(x)^2} + {(y)^2} + {(z)^2} - 2ax - 2by - 2cz + d = 0  \cr  & A \in (S) \Leftrightarrow 2a + 2b + 2c - d = 3.  \cr  & B \in (S) \Leftrightarrow 2a + 4b + 2c - d = 6.  \cr  & C \in (S) \Leftrightarrow 2a + 2b + 4c - d = 6.  \cr  & D \in (S) \Leftrightarrow 4a + 4b + 2c - d = 9. \cr} \)

Từ đó ta suy ra \(a = {3 \over 2};b = {3 \over 2};c = {3 \over 2};d = 6.\)

Vậy phương trình mặt cầu là :

\({x^2} + {y^2} + {z^2} - 3x - 3y - 3z + 6 = 0.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan