Loigiaihay.com 2024

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.12 trang 170 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Chứng minh phương trình

Chứng minh phương trình 

\({x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n} = 0\) luôn có nghiệm với n là số tự nhiên lẻ.

Giải:

Hàm số \(f\left( x \right) = {x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}\) xác định trên R

- Ta có

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {{x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}} \right) \cr
& {\rm{ = }}\mathop {\lim }\limits_{x \to + \infty } {x^n}\left( {1 + {{{a_1}} \over x} + {{{a_2}} \over {{x^2}}} + ... + {{{a_{n - 1}}} \over {{x^{n - 1}}}} + {{{a_n}} \over {{x^n}}}} \right) = + \infty \cr} \)

Vì \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty \) nên với dãy số \(\left( {{x_n}} \right)\) bất kì mà \({x_n} \to  + \infty \) ta luôn có \(\lim f\left( {{x_n}} \right) =  + \infty \)

Do đó, \(f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì \(f\left( {{x_n}} \right) > 1\) kể từ một số hạng nào đó trở đi.

Nói cách khác, luôn tồn tại số a sao cho \(f\left( a \right) > 1\)              (1)

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {{x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}} \right) \cr
& {\rm{ = }}\mathop {\lim }\limits_{x \to - \infty } {x^n}\left( {1 + {{{a_1}} \over x} + {{{a_2}} \over {{x^2}}} + ... + {{{a_{n - 1}}} \over {{x^{n - 1}}}} + {{{a_n}} \over {{x^n}}}} \right) = - \infty \cr} \) (do n lẻ).

Vì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - \infty\) nên với dãy số \(\left( {{x_n}} \right)\) bất kì mà \({x_n} \to  - \infty \) ta luôn có \(\lim f\left( {{x_n}} \right) =  - \infty \) hay \(\lim \left[ { - f\left( {{x_n}} \right)} \right] =  + \infty \)

Do đó, \( - f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì \( - f\left( {{x_n}} \right) > 1\) kể từ số hạng nào đó trở đi. Nói cách khác, luôn tồn tại b sao cho \( - f\left( b \right) > 1\) hay \(f\left( b \right) <  - 1\)               (2)

- Từ (1) và (2) suy ra \(f\left( a \right)f\left( b \right) < 0\)

Mặt khác, \(f\left( x \right)\) hàm đa thức liên tục trên R nên liên tục trên [a; b]

Do đó, phương trình \(f\left( x \right) = 0\) luôn có nghiệm.

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan