Lập phương trình mặt phẳng \((\alpha )\) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng \((\beta )\) : x + 2y – z = 0 .
Hướng dẫn làm bài:
Mặt phẳng \((\alpha )\) đi qua hai điểm A, B và vuông góc với mặt phẳng \((\beta )\):
x + 2y – z = 0.
Vậy hai vecto có giá song song hoặc nằm trên \((\alpha )\) là \(\overrightarrow {AB} = (2;2;1)\) và \(\overrightarrow {{n_\beta }} = (1;2; - 1)\)
Suy ra \((\alpha )\) có vecto pháp tuyến là: \(\overrightarrow {{n_\alpha }} = ( - 4;3;2)\)
Vậy phương trình của \((\alpha )\) là: -4(x) + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục