Cho hình chóp đều S.ABC. Chứng minh
a) Mỗi cạnh bên của hình chóp đó vuông góc với cạnh đối diện ;
b) Mỗi mặt phẳng chứa một cạnh bên và đường cao của hình chóp đều vuông góc với cạnh đối diện.
Giải:
a) Vì S.ABC là hình chóp đều nên ∆ABC là tam giác đều và có SA = SB = SC. Do đó khi ta vẽ \(SH \bot \left( {ABC} \right)\) thì H là trọng tâm của tam giác đều ABC và ta có \(AH \bot BC\). Theo định lí ba đường vuông góc ta có \(SA \bot BC\).
Chứng minh tương tự ta có \(SB \bot AC\) và \(SC \bot AB\)
b) Vì \(BC \bot AH\) và \(BC \bot SH\) nên \(BC \bot \left( {SAH} \right)\)
Chứng minh tương tự ta có \(CA \bot \left( {SBH} \right)\) và \(AB \bot \left( {SCH} \right)\).
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục