Loigiaihay.com 2019

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.67 trang 134 sách bài tập (SBT) – Hình học 12

Bình chọn:
4 trên 2 phiếu

Cho mặt phẳng (P): 2x – 3y + 4z – 5 = 0 và mặt cầu (S):x2 + y2 + z2 + 3x + 4y – 5z + 6 = 0

Cho mặt phẳng (P):  2x – 3y  + 4z – 5 = 0 và mặt cầu (S):

                    x2 + y2 + z2 + 3x + 4y – 5z + 6 = 0

a) Xác định tọa độ tâm I và bán kính r của mặt cầu (S).

b) Tính khoảng cách từ tâm I đến mặt phẳng (P).  Từ đó chứng minh rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn mà ta kí hiệu là (C). Xác định bán kính r’ và tâm H của đường tròn (C) .

Hướng dẫn làm bài:

a) (S) có tâm \(I( - {3 \over 2}; - 2;{5 \over 2})\) và có bán kính \(r = \sqrt {{9 \over 4} + 4 + {{25} \over 4} - 6}  = {{\sqrt {26} } \over 2}\)

b) \(d(I,(P)) = {{|2.( - {3 \over 2}) - 3.( - 2) + 4.({5 \over 2}) - 5|} \over {\sqrt {4 + 9 + 16} }} = {8 \over {\sqrt {29} }} < {{\sqrt {26} } \over 2}\)

Vậy  d(I, (P)) < r

Suy ra mặt phẳng (P) cắt mặt cầu (S) theo đường tròn tâm H bán kính r’.

H chính là hình chiếu vuông góc của I xuống mặt phẳng (P). Gọi \(\Delta \) là đường thẳng qua I và vuông góc với (P). Ta có vecto chỉ phương của  \(\Delta \)  là

\(\overrightarrow {{a_\Delta }}  = \overrightarrow {{n_{(P)}}}  = (2; - 3;4)\)

 Phương trình tham số của  \(\Delta \)  : \(\left\{ {\matrix{{x = - {3 \over 2} + 2t} \cr {y = - 2 - 3t} \cr {z = {5 \over 2} + 4t} \cr} } \right.\)

 \(\Delta \)  cắt (P) tại  \(H( - {3 \over 2} + 2t; - 2 - 3t;{5 \over 2} + 4t)\). Ta có:

\(H \in (\alpha ) \Leftrightarrow  2( - {3 \over 2} + 2t) - 3( - 2 - 3t) + 4({5 \over 2} + 4t) - 5 = 0\)

\( \Leftrightarrow  29t + 8 = 0 \Leftrightarrow  t =  - {8 \over {29}}\)

Suy ra tọa độ \(H( - {3 \over 2} - {{16} \over {29}}; - 2 + {{24} \over {29}};{5 \over 2} - {{32} \over {29}})\)  hay 

Ta có \(r{'^2} = {r^2} - {d^2}(I,(P)) = {{26} \over 4} - {{64} \over {29}} = {{249} \over {58}}\) . Suy ra  \(r' = \sqrt {{{249} \over {58}}} \)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.

Bài viết liên quan