Trong không gian cho ba vecto tùy ý \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) . Gọi \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b ,\overrightarrow v = 3\overrightarrow b - \overrightarrow c ,\overrightarrow {\rm{w}} = 2\overrightarrow c - 3\overrightarrow a \) .
Chứng tỏ rằng ba vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.
Hướng dẫn làm bài:
Muốn chứng tỏ rằng ba vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng ta cần tìm hai số thực p và q sao cho \(\overrightarrow {\rm{w}} = p\overrightarrow u + q\overrightarrow v \).
Giả sử có \(\overrightarrow {\rm{w}} = p\overrightarrow u + q\overrightarrow v \)
\(2\overrightarrow c - 3\overrightarrow a = p(\overrightarrow a - 2\overrightarrow b ) + q(3\overrightarrow b - \overrightarrow c )\)
\(\Leftrightarrow (3 + p)\overrightarrow a + (3q - 2p)\overrightarrow b - (q + 2)\overrightarrow c = \overrightarrow 0 \) (1)
Vì ba vecto lấy tùy ý \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) nên đẳng thức (1) xảy ra khi và chỉ khi:
\(\left\{ {\matrix{{3 + p = 0} \cr {3q - 2p = 0} \cr {q + 2 = 0} \cr} } \right. \Rightarrow \left\{ {\matrix{{p = - 3} \cr {q = - 2} \cr} } \right.\)
Như vậy ta có: \(\overrightarrow {\rm{w}} = - 3\overrightarrow u - 2\overrightarrow v \) nên ba vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục