Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 5.15 trang 221 sách bài tập (SBT) - Giải tích 12

Bình chọn:
4 trên 2 phiếu

Giải các phương trình sau:

Giải các phương trình sau:

a)  \({({{13} \over {24}})^{3x + 7}} = {({{24} \over {13}})^{2x + 3}}\)                                   

b) \({(4 - \sqrt {15} )^{\tan x}} + {(4 + \sqrt {15} )^{\tan x}} = 8\)

c) \({(\root 3 \of {6 + \sqrt {15} } )^x} + {(\root 3 \of {7 - \sqrt {15} } )^x} = 13\)

Hướng dẫn làm bài:

a) Phương trình đã cho tương đương với

\({\left( {{{13} \over {24}}} \right)^{3x + 7}} = {\left( {{{13} \over {24}}} \right)^{ - \left( {2x + 3} \right)}}\)

\(\Leftrightarrow 3x + 7 = –2x – 3\Leftrightarrow x = –2\)

b) Vì  \((4 - \sqrt {15} )(4 + \sqrt {15} ) = 1\)   nên ta đặt \({(4 - \sqrt {15} )^{\tan x}} = t(t > 0)\) , ta được phương trình  

\(\;{t^2}-{\rm{ }}8t{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow \left[ {\matrix{{t = 4 + \sqrt {15} } \cr {t = 4 - \sqrt {15} } \cr} } \right.\)

+) Ứng với \(t = 4 - \sqrt {15} \) , ta có 

\({(4 - \sqrt {15} )^{tanx}} = 4 - \sqrt {15}\)

\(\Leftrightarrow \tan  = 1 \Leftrightarrow x = {\pi  \over 4} + k\pi ,k \in Z\)

+) Ứng với \(t = 4 + \sqrt {15} \) , ta có

\({(4 - \sqrt {15} )^{tanx}} = 4 + \sqrt {15}\)

\( \Leftrightarrow \tan  =  - 1 \Leftrightarrow x =  - {\pi  \over 4} + k\pi ,k \in Z\)

Vậy phương trình có nghiệm \(x = {\pi  \over 4} + k{\pi  \over 2},k \in Z\)

c) Ta nhận thấy x = 3 là nghiệm của phương trình. Mặt khác, hàm số 

\(f(x) = {(\root 3 \of {6 + \sqrt {15} } )^x} + {(\root 3 \of {7 - \sqrt {15} } )^x}\)

Là tổng của hai hàm số mũ với cơ số lớn hơn 1 (hai hàm số đồng biến) nên f(x) đồng biến trên R. Do đó, x = 3 là nghiệm duy nhất của phương trình.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan