Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 6 trang 77 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Chứng minh rằng

Giả sử A và B là hai biến cố \({{P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} = a\). Chứng minh rằng

a) \({{P\left( {A \cap B} \right)} \over {P\left( A \right) + P\left( B \right)}} = 1 - a;\)     

b) \({1 \over 2} \le a \le 1.\)    

Giải:

a)      Vì \(P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right)\) nên

\({{P\left( {A \cap B} \right)} \over {P\left( A \right) + P\left( B \right)}} = {{P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} = 1 - a.\)

b)      Vì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) \le P\left( A \right) + P\left( B \right)\)

Nên \(a = {{P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} \le 1\,\,\,\,\left( 1 \right)\)           

Mặt khác, \(2P\left( {A \cup B} \right) = P\left( {A \cup B} \right) + P\left( {A \cup B} \right) \ge P\left( A \right) + P\left( B \right)\)

Vậy \(a = {{P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} \ge {1 \over 2}\)

Kết hợp với (1), ta có \({1 \over 2} \le a \le 1\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan